In [3]:
    
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
pd.__version__ # need 0.14.0 for multiindex slicing
    
    Out[3]:
'0.14.1'
In [4]:
    
o_raw = pd.read_table("overall_statistics_ksmall.txt")
v_raw = pd.read_table("variable_statistics_ksmall.txt")
# ncol: 48602, lev: 30 (88x), ilev: 31 (9x), 2D: 101x
#N_c = 48602 # for all variables, horizontal stacking
#N_d = 3008  # for all variables, horizontal stacking
N_c = 3008  # for all variables, vertical stacking
#N_c = 88*30 # for 3D variables, vertical stacking
N_d = 48602 # for all variables, vertical stacking
#N_c = 88       # for 3D variables, vertical stacking (ncol & lev distributed)
#N_d = 30*48602 # for 3D variables, vertical stacking (ncol & lev distributed)
    
In [5]:
    
o = o_raw.set_index(["K","M","STATISTIC"]).loc[:,"VALUE"].unstack()
v = v_raw.set_index(["K","M","STATISTIC","VARIABLE"]).loc[:,"VALUE"].unstack().unstack()
    
In [6]:
    
vi_raw = pd.read_table("variable_information.txt")
vi = vi_raw.set_index(["VARIABLE","INFO"]).unstack().loc[:,"VALUE"]
vi["levels"] = vi["levels"].astype("int")
vi.columns.name = ""
    
In [7]:
    
%pylab inline
    
    
Populating the interactive namespace from numpy and matplotlib
In [8]:
    
original_size = N_c * N_d
compressed_size = lambda K, M: N_d + N_c * K + N_d * M + N_c * K * M
M_max = lambda K: N_c * N_d / (N_d + K * N_c) - 1
plt.plot(arange(1,201), M_max(arange(1, 201)))
    
    Out[8]:
[<matplotlib.lines.Line2D at 0x7f53dec34e80>]
    
 
In [9]:
    
o["compression_ratio_fixed"] = compressed_size(array(o.index.get_level_values("K")),array(o.index.get_level_values("M"))) / original_size
o.loc[:,"compression_ratio_fixed"].unstack("K")
    
    Out[9]:
  
    
      K 
      1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
      10 
     
    
      M 
       
       
       
       
       
       
       
       
       
       
     
  
  
    
      10  
       0.003883 
       0.004110 
       0.004336 
       0.004562 
       0.004789 
       0.005015 
       0.005241 
       0.005468 
       0.005694 
       0.005920 
     
    
      20  
       0.007413 
       0.007846 
       0.008278 
       0.008710 
       0.009142 
       0.009574 
       0.010006 
       0.010438 
       0.010870 
       0.011302 
     
    
      30  
       0.010944 
       0.011582 
       0.012219 
       0.012857 
       0.013495 
       0.014133 
       0.014771 
       0.015409 
       0.016046 
       0.016684 
     
    
      40  
       0.014474 
       0.015317 
       0.016161 
       0.017005 
       0.017848 
       0.018692 
       0.019535 
       0.020379 
       0.021223 
       0.022066 
     
    
      50  
       0.018004 
       0.019053 
       0.020103 
       0.021152 
       0.022201 
       0.023251 
       0.024300 
       0.025350 
       0.026399 
       0.027448 
     
    
      60  
       0.021534 
       0.022789 
       0.024045 
       0.025300 
       0.026555 
       0.027810 
       0.029065 
       0.030320 
       0.031575 
       0.032830 
     
    
      70  
       0.025065 
       0.026525 
       0.027986 
       0.029447 
       0.030908 
       0.032369 
       0.033830 
       0.035290 
       0.036751 
       0.038212 
     
    
      80  
       0.028595 
       0.030261 
       0.031928 
       0.033595 
       0.035261 
       0.036928 
       0.038594 
       0.040261 
       0.041928 
       0.043594 
     
    
      90  
       0.032125 
       0.033997 
       0.035870 
       0.037742 
       0.039614 
       0.041487 
       0.043359 
       0.045231 
       0.047104 
       0.048976 
     
    
      100 
       0.035655 
       0.037733 
       0.039811 
       0.041890 
       0.043968 
       0.046046 
       0.048124 
       0.050202 
       0.052280 
       0.054358 
     
    
      110 
       0.039185 
       0.041469 
       0.043753 
       0.046037 
       0.048321 
       0.050605 
       0.052889 
       0.055172 
       0.057456 
       0.059740 
     
    
      120 
       0.042716 
       0.045205 
       0.047695 
       0.050185 
       0.052674 
       0.055164 
       0.057653 
       0.060143 
       0.062633 
       0.065122 
     
    
      130 
       0.046246 
       0.048941 
       0.051637 
       0.054332 
       0.057027 
       0.059723 
       0.062418 
       0.065113 
       0.067809 
       0.070504 
     
    
      140 
       0.049776 
       0.052677 
       0.055578 
       0.058479 
       0.061381 
       0.064282 
       0.067183 
       0.070084 
       0.072985 
       0.075886 
     
    
      150 
       0.053306 
       0.056413 
       0.059520 
       0.062627 
       0.065734 
       0.068841 
       0.071948 
       0.075054 
       0.078161 
       0.081268 
     
    
      160 
       0.056837 
       0.060149 
       0.063462 
       0.066774 
       0.070087 
       0.073400 
       0.076712 
       0.080025 
       0.083338 
       0.086650 
     
    
      170 
       0.060367 
       0.063885 
       0.067404 
       0.070922 
       0.074440 
       0.077959 
       0.081477 
       0.084995 
       0.088514 
       0.092032 
     
    
      180 
       0.063897 
       0.067621 
       0.071345 
       0.075069 
       0.078794 
       0.082518 
       0.086242 
       0.089966 
       0.093690 
       0.097414 
     
    
      190 
       0.067427 
       0.071357 
       0.075287 
       0.079217 
       0.083147 
       0.087077 
       0.091006 
       0.094936 
       0.098866 
       0.102796 
     
    
      200 
       0.070957 
       0.075093 
       0.079229 
       0.083364 
       0.087500 
       0.091636 
       0.095771 
       0.099907 
       0.104042 
       0.108178 
     
  
In [10]:
    
o.loc[:,"L_final"].unstack("K").plot()
    
    Out[10]:
<matplotlib.axes.AxesSubplot at 0x7f53dec045c0>
    
 
In [11]:
    
o.loc[:,"iterations"].unstack("K")
    
    Out[11]:
  
    
      K 
      1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
      10 
     
    
      M 
       
       
       
       
       
       
       
       
       
       
     
  
  
    
      10  
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      20  
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      30  
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      40  
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      50  
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      60  
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      70  
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      80  
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      90  
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      100 
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      110 
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      120 
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      130 
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      140 
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      150 
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      160 
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      170 
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      180 
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      190 
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
    
      200 
       1 
       25 
       23 
       34 
       82 
       65 
       62 
       69 
       45 
       52 
     
  
In [12]:
    
o.loc[:,"compression_ratio_fixed"].unstack("K")
    
    Out[12]:
  
    
      K 
      1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
      10 
     
    
      M 
       
       
       
       
       
       
       
       
       
       
     
  
  
    
      10  
       0.003883 
       0.004110 
       0.004336 
       0.004562 
       0.004789 
       0.005015 
       0.005241 
       0.005468 
       0.005694 
       0.005920 
     
    
      20  
       0.007413 
       0.007846 
       0.008278 
       0.008710 
       0.009142 
       0.009574 
       0.010006 
       0.010438 
       0.010870 
       0.011302 
     
    
      30  
       0.010944 
       0.011582 
       0.012219 
       0.012857 
       0.013495 
       0.014133 
       0.014771 
       0.015409 
       0.016046 
       0.016684 
     
    
      40  
       0.014474 
       0.015317 
       0.016161 
       0.017005 
       0.017848 
       0.018692 
       0.019535 
       0.020379 
       0.021223 
       0.022066 
     
    
      50  
       0.018004 
       0.019053 
       0.020103 
       0.021152 
       0.022201 
       0.023251 
       0.024300 
       0.025350 
       0.026399 
       0.027448 
     
    
      60  
       0.021534 
       0.022789 
       0.024045 
       0.025300 
       0.026555 
       0.027810 
       0.029065 
       0.030320 
       0.031575 
       0.032830 
     
    
      70  
       0.025065 
       0.026525 
       0.027986 
       0.029447 
       0.030908 
       0.032369 
       0.033830 
       0.035290 
       0.036751 
       0.038212 
     
    
      80  
       0.028595 
       0.030261 
       0.031928 
       0.033595 
       0.035261 
       0.036928 
       0.038594 
       0.040261 
       0.041928 
       0.043594 
     
    
      90  
       0.032125 
       0.033997 
       0.035870 
       0.037742 
       0.039614 
       0.041487 
       0.043359 
       0.045231 
       0.047104 
       0.048976 
     
    
      100 
       0.035655 
       0.037733 
       0.039811 
       0.041890 
       0.043968 
       0.046046 
       0.048124 
       0.050202 
       0.052280 
       0.054358 
     
    
      110 
       0.039185 
       0.041469 
       0.043753 
       0.046037 
       0.048321 
       0.050605 
       0.052889 
       0.055172 
       0.057456 
       0.059740 
     
    
      120 
       0.042716 
       0.045205 
       0.047695 
       0.050185 
       0.052674 
       0.055164 
       0.057653 
       0.060143 
       0.062633 
       0.065122 
     
    
      130 
       0.046246 
       0.048941 
       0.051637 
       0.054332 
       0.057027 
       0.059723 
       0.062418 
       0.065113 
       0.067809 
       0.070504 
     
    
      140 
       0.049776 
       0.052677 
       0.055578 
       0.058479 
       0.061381 
       0.064282 
       0.067183 
       0.070084 
       0.072985 
       0.075886 
     
    
      150 
       0.053306 
       0.056413 
       0.059520 
       0.062627 
       0.065734 
       0.068841 
       0.071948 
       0.075054 
       0.078161 
       0.081268 
     
    
      160 
       0.056837 
       0.060149 
       0.063462 
       0.066774 
       0.070087 
       0.073400 
       0.076712 
       0.080025 
       0.083338 
       0.086650 
     
    
      170 
       0.060367 
       0.063885 
       0.067404 
       0.070922 
       0.074440 
       0.077959 
       0.081477 
       0.084995 
       0.088514 
       0.092032 
     
    
      180 
       0.063897 
       0.067621 
       0.071345 
       0.075069 
       0.078794 
       0.082518 
       0.086242 
       0.089966 
       0.093690 
       0.097414 
     
    
      190 
       0.067427 
       0.071357 
       0.075287 
       0.079217 
       0.083147 
       0.087077 
       0.091006 
       0.094936 
       0.098866 
       0.102796 
     
    
      200 
       0.070957 
       0.075093 
       0.079229 
       0.083364 
       0.087500 
       0.091636 
       0.095771 
       0.099907 
       0.104042 
       0.108178 
     
  
In [13]:
    
o.loc[:,"lanczos_max"].unstack("K")
    
    Out[13]:
  
    
      K 
      1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
      10 
     
    
      M 
       
       
       
       
       
       
       
       
       
       
     
  
  
    
      10  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      20  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      30  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      40  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      50  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      60  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      70  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      80  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      90  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      100 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      110 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      120 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      130 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      140 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      150 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      160 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      170 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      180 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      190 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      200 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
  
In [14]:
    
o.loc[:,"lanczos_max_converged"].unstack("K")
    
    Out[14]:
  
    
      K 
      1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
      10 
     
    
      M 
       
       
       
       
       
       
       
       
       
       
     
  
  
    
      10  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      20  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      30  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      40  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      50  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      60  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      70  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      80  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      90  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      100 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      110 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      120 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      130 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      140 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      150 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      160 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      170 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      180 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      190 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      200 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
  
In [15]:
    
o.loc[:,"lanczos_mean"].unstack("K")
    
    Out[15]:
  
    
      K 
      1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
      10 
     
    
      M 
       
       
       
       
       
       
       
       
       
       
     
  
  
    
      10  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      20  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      30  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      40  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      50  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      60  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      70  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      80  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      90  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      100 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      110 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      120 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      130 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      140 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      150 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      160 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      170 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      180 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      190 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      200 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
  
In [16]:
    
o.loc[:,"lanczos_mean_converged"].unstack("K")
    
    Out[16]:
  
    
      K 
      1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
      10 
     
    
      M 
       
       
       
       
       
       
       
       
       
       
     
  
  
    
      10  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      20  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      30  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      40  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      50  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      60  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      70  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      80  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      90  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      100 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      110 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      120 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      130 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      140 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      150 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      160 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      170 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      180 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      190 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      200 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
  
In [17]:
    
o.loc[:,"lanczos_min"].unstack("K")
    
    Out[17]:
  
    
      K 
      1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
      10 
     
    
      M 
       
       
       
       
       
       
       
       
       
       
     
  
  
    
      10  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      20  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      30  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      40  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      50  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      60  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      70  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      80  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      90  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      100 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      110 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      120 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      130 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      140 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      150 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      160 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      170 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      180 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      190 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      200 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
  
In [18]:
    
o.loc[:,"lanczos_min_converged"].unstack("K")
    
    Out[18]:
  
    
      K 
      1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
      10 
     
    
      M 
       
       
       
       
       
       
       
       
       
       
     
  
  
    
      10  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      20  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      30  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      40  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      50  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      60  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      70  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      80  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      90  
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      100 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      110 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      120 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      130 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      140 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      150 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      160 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      170 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      180 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      190 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
    
      200 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
       0 
     
  
In [19]:
    
o.loc[:,"time_input"].unstack("K")
    
    Out[19]:
  
    
      K 
      1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
      10 
     
    
      M 
       
       
       
       
       
       
       
       
       
       
     
  
  
    
      10  
       42.97990 
        9.94910 
       15.50650 
       16.26390 
       16.33430 
       16.42610 
       13.73750 
       11.08370 
        8.88494 
       15.87870 
     
    
      20  
       43.31800 
        8.69896 
       14.32550 
       17.71960 
       17.01740 
        9.21970 
       15.57390 
       11.12010 
        8.92646 
       11.58560 
     
    
      30  
       41.07940 
        8.88053 
       15.71720 
        8.21382 
       16.41150 
        8.49662 
       15.67260 
       11.05070 
        8.59100 
       11.87890 
     
    
      40  
       40.13400 
        9.01983 
       15.58890 
        8.22454 
       15.52080 
        9.21106 
       10.85090 
       11.05080 
        9.71850 
       16.04650 
     
    
      50  
       40.56170 
       10.52100 
       15.71000 
       10.51600 
       16.31130 
        8.52261 
       10.74600 
       11.07480 
        8.90190 
        7.39747 
     
    
      60  
       39.79010 
       12.31600 
        9.63148 
       10.28730 
       17.42060 
       15.77360 
       15.70030 
       11.04200 
        8.61949 
        7.59818 
     
    
      70  
       40.01110 
        8.88096 
        9.61642 
        9.03971 
       16.44650 
       10.94510 
       12.67260 
       11.06410 
       16.98880 
        9.00765 
     
    
      80  
       40.06760 
        8.98192 
        9.24652 
        8.77061 
       17.27780 
        7.56561 
       12.17040 
       10.85300 
       11.80230 
        9.24272 
     
    
      90  
       39.88680 
       15.57000 
        9.40810 
       17.18210 
       16.87550 
        7.56736 
        8.71712 
       10.92020 
       11.97840 
       16.61890 
     
    
      100 
       41.97040 
       15.58590 
        9.39768 
       16.72030 
       16.27970 
        9.90925 
        8.66113 
       10.87130 
       15.79540 
       15.62000 
     
    
      110 
       39.90300 
       15.16340 
        9.38203 
       16.58550 
       16.37800 
        8.67999 
       13.32640 
       10.89030 
       16.72940 
       16.48130 
     
    
      120 
       10.08230 
       15.04360 
        9.33654 
       16.33400 
       15.96070 
        8.71561 
       12.22330 
       11.05160 
       12.07700 
       16.58180 
     
    
      130 
        9.94383 
       14.61300 
       11.95540 
       41.06550 
        9.10636 
       13.86890 
       15.67910 
       11.04560 
       12.13590 
       16.31410 
     
    
      140 
       10.09190 
       15.80480 
        8.57795 
       15.93490 
        8.91187 
        7.78253 
        8.85068 
       10.99800 
       16.23130 
       16.13240 
     
    
      150 
        9.89135 
       15.56120 
        8.65707 
       17.03530 
       15.79020 
        8.41629 
        8.85053 
       11.05280 
        7.57112 
       15.18230 
     
    
      160 
       10.06290 
       15.58560 
        8.46989 
       16.20200 
       15.29000 
       16.50920 
       16.92730 
       11.07280 
        7.46672 
       15.81580 
     
    
      170 
       10.48760 
       15.60910 
        9.98515 
       16.91990 
       16.80620 
       15.87950 
        8.64900 
       15.52910 
        8.61146 
        8.54116 
     
    
      180 
       10.06620 
       15.71460 
        8.39660 
       17.60180 
       16.71690 
       13.14440 
        8.85717 
       11.30130 
        8.61399 
        8.39741 
     
    
      190 
        9.91562 
       15.56150 
       17.18500 
       16.33050 
       16.05120 
       10.06690 
       16.76520 
        8.90050 
       13.72930 
       11.48390 
     
    
      200 
        9.86038 
       15.20310 
       17.43150 
       17.60460 
       15.69840 
        9.85547 
       16.25000 
        9.07867 
       15.14500 
       12.22830 
     
  
In [20]:
    
o.loc[:,"time_solve"].unstack("K") / 60
    
    Out[20]:
  
    
      K 
      1 
      2 
      3 
      4 
      5 
      6 
      7 
      8 
      9 
      10 
     
    
      M 
       
       
       
       
       
       
       
       
       
       
     
  
  
    
      10  
       0.083017 
       0.533903 
       0.582618 
       0.815680 
        1.975067 
        1.697800 
        1.857783 
        2.319100 
        1.516485 
        1.953733 
     
    
      20  
       0.143521 
       0.605242 
       0.702655 
       0.919577 
        2.105850 
        1.827583 
        2.030150 
        2.499233 
        1.680750 
        2.125500 
     
    
      30  
       0.253987 
       0.778828 
       0.883903 
       1.104117 
        2.279583 
        2.014033 
        2.247583 
        2.743467 
        1.900367 
        2.418850 
     
    
      40  
       0.387565 
       0.915927 
       1.113708 
       1.330282 
        2.508250 
        2.217483 
        2.524767 
        3.076883 
        2.193517 
        2.724633 
     
    
      50  
       0.516195 
       1.069355 
       1.376312 
       1.585813 
        2.767900 
        2.537383 
        2.859900 
        3.504650 
        2.534433 
        3.209067 
     
    
      60  
       0.700507 
       1.396838 
       1.639628 
       1.846417 
        3.138933 
        2.860467 
        3.286517 
        3.919850 
        2.949400 
        3.713817 
     
    
      70  
       0.879533 
       1.614903 
       2.045217 
       2.178000 
        3.520133 
        3.302800 
        3.757383 
        4.456500 
        3.441767 
        4.271950 
     
    
      80  
       1.123257 
       1.915567 
       2.400533 
       2.649083 
        3.924133 
        3.714150 
        4.331600 
        5.117900 
        3.929083 
        4.862833 
     
    
      90  
       1.397782 
       2.238433 
       2.798983 
       3.062767 
        4.337550 
        4.154900 
        4.892067 
        5.740917 
        4.517000 
        5.564883 
     
    
      100 
       1.637312 
       2.563967 
       3.378117 
       3.478000 
        4.898133 
        4.739633 
        5.355083 
        6.315700 
        5.153283 
        6.226283 
     
    
      110 
       1.875217 
       2.919017 
       3.939083 
       4.009633 
        5.298350 
        5.229717 
        6.106200 
        7.084367 
        5.892183 
        7.128550 
     
    
      120 
       2.224200 
       3.510300 
       4.375900 
       4.818783 
        5.796133 
        5.794333 
        6.721917 
        8.130100 
        6.628650 
        7.974383 
     
    
      130 
       2.535400 
       3.896233 
       4.804600 
       4.873667 
        6.591483 
        6.278900 
        7.563233 
        8.892217 
        7.317000 
        8.743267 
     
    
      140 
       2.899283 
       4.275233 
       5.720117 
       5.585800 
        7.370467 
        7.078067 
        8.459467 
        9.699933 
        8.134467 
        9.791983 
     
    
      150 
       3.160817 
       4.845817 
       6.070700 
       6.270733 
        8.007517 
        7.759133 
        9.451250 
       10.707683 
        9.210817 
       11.063317 
     
    
      160 
       3.708233 
       5.492567 
       6.675500 
       6.777383 
        8.714017 
        8.770400 
       10.263917 
       11.792933 
       10.221867 
       12.066733 
     
    
      170 
       4.005117 
       5.686167 
       7.610800 
       7.696983 
        9.525933 
        9.433567 
       11.317400 
       12.968333 
       10.841850 
       13.189450 
     
    
      180 
       4.116850 
       6.392467 
       8.361500 
       8.293267 
       10.214050 
       10.452950 
       12.222883 
       13.952133 
       11.890767 
       14.461517 
     
    
      190 
       4.993733 
       6.999350 
       9.310950 
       8.884667 
       11.032817 
       11.159967 
       13.353917 
       15.261900 
       13.204033 
       15.455800 
     
    
      200 
       5.339817 
       7.765733 
       9.958267 
       9.901300 
       12.171550 
       12.298100 
       14.445067 
       16.904833 
       14.169083 
       16.771500 
     
  
In [21]:
    
statistics_of_interest = ["rms_error","max_error","precisionbits","srr","correlation"]
    
In [22]:
    
v.mean(axis=0).unstack()[statistics_of_interest].join(vi)
    
    Out[22]:
  
    
       
      rms_error 
      max_error 
      precisionbits 
      srr 
      correlation 
      levels 
      name 
     
    
      VARIABLE 
       
       
       
       
       
       
       
     
  
  
    
      ABSORB 
       0.001467 
       0.217074 
       1.667108 
       3.295136 
       0.981809 
       30 
                                   Aerosol absorption 
     
    
      AEROD_v 
       0.004679 
       0.093269 
       3.252420 
       4.229692 
       0.990865 
        1 
          Total Aerosol Optical Depth in visible band 
     
    
      ANRAIN 
       0.006887 
       0.479828 
       0.264864 
       2.984493 
       0.985676 
       30 
                             Average rain number conc 
     
    
      ANSNOW 
       0.004095 
       0.338459 
       0.857183 
       2.180191 
       0.967410 
       30 
                             Average snow number conc 
     
    
      AODABS 
       0.004366 
       0.117032 
       2.807556 
       4.099596 
       0.990065 
        1 
              Aerosol absorption optical depth 550 nm 
     
    
      AODDUST1 
       0.006773 
       0.102084 
       2.823611 
       3.837607 
       0.989125 
        1 
       Aerosol optical depth 550 nm model 1 from dust 
     
    
      AODDUST3 
       0.004525 
       0.108660 
       2.990315 
       4.029360 
       0.989314 
        1 
       Aerosol optical depth 550 nm model 3 from dust 
     
    
      AODMODE1 
       0.007950 
       0.090349 
       3.033658 
       4.167597 
       0.992492 
        1 
                  Aerosol optical depth 550 nm mode 1 
     
    
      AODMODE2 
       0.009033 
       0.274097 
       1.332021 
       2.626025 
       0.953269 
        1 
                  Aerosol optical depth 550 nm mode 2 
     
    
      AODMODE3 
       0.004547 
       0.108180 
       3.001464 
       4.030117 
       0.989037 
        1 
                  Aerosol optical depth 550 nm mode 3 
     
    
      AODVIS 
       0.004679 
       0.093269 
       3.252420 
       4.229692 
       0.990865 
        1 
                         Aerosol optical depth 550 nm 
     
    
      AQRAIN 
       0.002916 
       0.218896 
       1.599774 
       3.074270 
       0.984777 
       30 
                            Average rain mixing ratio 
     
    
      AQSNOW 
       0.003176 
       0.268212 
       1.257473 
       3.361745 
       0.990175 
       30 
                            Average snow mixing ratio 
     
    
      AREI 
       0.007126 
       0.191995 
       1.770409 
       4.410668 
       0.996969 
       30 
                         Average ice effective radius 
     
    
      AREL 
       0.006193 
       0.259059 
       1.234031 
       4.535346 
       0.997219 
       30 
                     Average droplet effective radius 
     
    
      ATMEINT 
       0.006089 
       0.079286 
       3.301977 
       5.476003 
       0.997366 
        1 
       Vertically integrated total atmospheric energy 
     
    
      AWNC 
       0.005969 
       0.221180 
       1.421845 
       3.360092 
       0.988563 
       30 
                      Average cloud water number conc 
     
    
      AWNI 
       0.004364 
       0.202741 
       1.725367 
       3.261343 
       0.987636 
       30 
                        Average cloud ice number conc 
     
    
      BURDEN1 
       0.005692 
       0.086299 
       3.222393 
       4.193424 
       0.992325 
        1 
                                Aerosol burden mode 1 
     
    
      BURDEN2 
       0.010478 
       0.285589 
       1.461173 
       2.792766 
       0.949315 
        1 
                                Aerosol burden mode 2 
     
    
      BURDEN3 
       0.004366 
       0.136551 
       2.506415 
       3.759967 
       0.987204 
        1 
                                Aerosol burden mode 3 
     
    
      CCN3 
       0.003192 
       0.186441 
       1.900958 
       4.206911 
       0.995308 
       30 
                          CCN concentration at S=0.1% 
     
    
      CDNUMC 
       0.011280 
       0.149119 
       2.202505 
       3.464438 
       0.984600 
        1 
          Vertically-integrated droplet concentration 
     
    
      CLDFSNOW 
       0.005886 
       0.137916 
       2.151002 
       4.724054 
       0.998163 
       30 
                                             CLDFSNOW 
     
    
      CLDHGH 
       0.010871 
       0.095210 
       2.794603 
       4.194362 
       0.995272 
        1 
                     Vertically-integrated high cloud 
     
    
      CLDICE 
       0.002553 
       0.120254 
       2.446547 
       3.498578 
       0.992023 
       30 
                   Grid box averaged cloud ice amount 
     
    
      CLDLIQ 
       0.005084 
       0.235631 
       1.411061 
       3.458221 
       0.990317 
       30 
                Grid box averaged cloud liquid amount 
     
    
      CLDLOW 
       0.011214 
       0.184445 
       2.070033 
       5.089144 
       0.997546 
        1 
                      Vertically-integrated low cloud 
     
    
      CLDMED 
       0.011042 
       0.191403 
       1.675948 
       4.229055 
       0.996759 
        1 
                Vertically-integrated mid-level cloud 
     
    
      CLDTOT 
       0.011067 
       0.104695 
       2.700284 
       4.632549 
       0.996781 
        1 
                    Vertically-integrated total cloud 
     
    
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
     
    
      WGUSTD 
       0.012423 
       0.189505 
       1.776587 
       3.312548 
       0.981893 
        1 
                           wind gusts from turbulence 
     
    
      WSUB 
       0.004067 
       0.142639 
       2.296229 
       4.606386 
       0.997205 
       30 
                Diagnostic sub-grid vertical velocity 
     
    
      WTKE 
       0.004067 
       0.142639 
       2.296229 
       4.606386 
       0.997205 
       30 
               Standard deviation of updraft velocity 
     
    
      Z3 
       0.000677 
       0.014161 
       5.778648 
       9.406384 
       0.999991 
       30 
                Geopotential Height (above sea level) 
     
    
      bc_a1 
       0.003380 
       0.208501 
       1.699095 
       3.095448 
       0.978915 
       30 
                                  bc_a1 concentration 
     
    
      dgnd_a01 
       0.005143 
       0.146678 
       2.219933 
       4.862490 
       0.997793 
       30 
                     dry dgnum, interstitial, mode 01 
     
    
      dgnd_a02 
       0.006322 
       0.114046 
       2.412585 
       5.062347 
       0.998209 
       30 
                     dry dgnum, interstitial, mode 02 
     
    
      dgnd_a03 
       0.005722 
       0.124622 
       2.346163 
       4.133092 
       0.995825 
       30 
                     dry dgnum, interstitial, mode 03 
     
    
      dgnw_a01 
       0.005321 
       0.138765 
       2.296636 
       5.520037 
       0.999123 
       30 
                     wet dgnum, interstitial, mode 01 
     
    
      dgnw_a02 
       0.005406 
       0.103211 
       2.647615 
       5.495297 
       0.999194 
       30 
                     wet dgnum, interstitial, mode 02 
     
    
      dgnw_a03 
       0.006635 
       0.169771 
       1.968442 
       5.248636 
       0.999030 
       30 
                     wet dgnum, interstitial, mode 03 
     
    
      dst_a1 
       0.002306 
       0.210160 
       1.629192 
       3.269843 
       0.983426 
       30 
                                 dst_a1 concentration 
     
    
      dst_a1SF 
       0.004886 
       0.627142 
      -0.095978 
       0.859491 
       0.695058 
        1 
                         dst_a1 dust surface emission 
     
    
      dst_a3 
       0.001856 
       0.207706 
       1.682591 
       3.092108 
       0.978208 
       30 
                                 dst_a3 concentration 
     
    
      dst_a3SF 
       0.004886 
       0.627142 
      -0.095978 
       0.859491 
       0.695058 
        1 
                         dst_a3 dust surface emission 
     
    
      ncl_a1 
       0.004213 
       0.122508 
       2.304085 
       5.219200 
       0.998652 
       30 
                                 ncl_a1 concentration 
     
    
      ncl_a2 
       0.003811 
       0.117472 
       2.307051 
       4.961108 
       0.998177 
       30 
                                 ncl_a2 concentration 
     
    
      ncl_a3 
       0.004551 
       0.146352 
       1.965695 
       5.493614 
       0.999003 
       30 
                                 ncl_a3 concentration 
     
    
      num_a1 
       0.002818 
       0.288731 
       1.264885 
       2.985674 
       0.978747 
       30 
                                 num_a1 concentration 
     
    
      num_a2 
       0.004452 
       0.344714 
       0.911881 
       2.547357 
       0.962337 
       30 
                                 num_a2 concentration 
     
    
      num_a3 
       0.002258 
       0.208242 
       1.639729 
       3.395467 
       0.985971 
       30 
                                 num_a3 concentration 
     
    
      pom_a1 
       0.003114 
       0.314294 
       1.044180 
       2.888264 
       0.972639 
       30 
                                 pom_a1 concentration 
     
    
      so4_a1 
       0.005247 
       0.125397 
       2.400111 
       4.231615 
       0.993735 
       30 
                                 so4_a1 concentration 
     
    
      so4_a2 
       0.003561 
       0.419844 
       0.709966 
       2.132497 
       0.926999 
       30 
                                 so4_a2 concentration 
     
    
      so4_a3 
       0.004629 
       0.226972 
       1.506700 
       3.697342 
       0.984864 
       30 
                                 so4_a3 concentration 
     
    
      soa_a1 
       0.003675 
       0.143745 
       2.074490 
       3.570641 
       0.989913 
       30 
                                 soa_a1 concentration 
     
    
      soa_a2 
       0.004887 
       0.245735 
       1.441618 
       2.924345 
       0.975632 
       30 
                                 soa_a2 concentration 
     
    
      wat_a1 
       0.004999 
       0.245158 
       1.433154 
       4.345703 
       0.996745 
       30 
                 aerosol water, interstitial, mode 01 
     
    
      wat_a2 
       0.002958 
       0.325752 
       1.096198 
       2.718148 
       0.971210 
       30 
                 aerosol water, interstitial, mode 02 
     
    
      wat_a3 
       0.005317 
       0.193280 
       1.618580 
       4.742294 
       0.997950 
       30 
                 aerosol water, interstitial, mode 03 
     
  
186 rows × 7 columns
In [23]:
    
v.mean(axis=1,level="STATISTIC")[statistics_of_interest]
    
    Out[23]:
  
    
       
      STATISTIC 
      rms_error 
      max_error 
      precisionbits 
      srr 
      correlation 
     
    
      K 
      M 
       
       
       
       
       
     
  
  
    
      1  
      10  
       0.032613 
       0.558757 
       0.026621 
       1.554078 
       0.873119 
     
    
      20  
       0.022761 
       0.477184 
       0.322678 
       2.035921 
       0.919614 
     
    
      30  
       0.017676 
       0.421664 
       0.547743 
       2.384021 
       0.937093 
     
    
      40  
       0.014652 
       0.380159 
       0.719347 
       2.642628 
       0.950439 
     
    
      50  
       0.012387 
       0.333471 
       0.944553 
       2.897084 
       0.960944 
     
    
      60  
       0.010741 
       0.303019 
       1.116428 
       3.114140 
       0.966650 
     
    
      70  
       0.009491 
       0.270752 
       1.301510 
       3.293191 
       0.971755 
     
    
      80  
       0.008459 
       0.248603 
       1.445139 
       3.458535 
       0.975514 
     
    
      90  
       0.007528 
       0.226416 
       1.630676 
       3.627225 
       0.978230 
     
    
      100 
       0.006783 
       0.207941 
       1.770880 
       3.772235 
       0.980854 
     
    
      110 
       0.006155 
       0.194422 
       1.887100 
       3.906495 
       0.982478 
     
    
      120 
       0.005602 
       0.179617 
       2.028047 
       4.038655 
       0.984053 
     
    
      130 
       0.005078 
       0.166141 
       2.161475 
       4.168980 
       0.985168 
     
    
      140 
       0.004636 
       0.155347 
       2.260499 
       4.297271 
       0.986745 
     
    
      150 
       0.004224 
       0.143907 
       2.377828 
       4.412588 
       0.988654 
     
    
      160 
       0.003865 
       0.134175 
       2.482508 
       4.531365 
       0.989652 
     
    
      170 
       0.003598 
       0.127328 
       2.566201 
       4.628785 
       0.990111 
     
    
      180 
       0.003359 
       0.120923 
       2.637349 
       4.726216 
       0.990721 
     
    
      190 
       0.003136 
       0.114491 
       2.738418 
       4.827706 
       0.991189 
     
    
      200 
       0.002931 
       0.108098 
       2.841470 
       4.923266 
       0.991673 
     
    
      2  
      10  
       0.029116 
       0.541185 
       0.091786 
       1.711856 
       0.890421 
     
    
      20  
       0.019743 
       0.442116 
       0.427316 
       2.228669 
       0.932706 
     
    
      30  
       0.015137 
       0.383848 
       0.677909 
       2.599401 
       0.949513 
     
    
      40  
       0.012470 
       0.340357 
       0.872866 
       2.877093 
       0.961129 
     
    
      50  
       0.010400 
       0.288785 
       1.149991 
       3.154917 
       0.969615 
     
    
      60  
       0.009021 
       0.256475 
       1.359411 
       3.358547 
       0.974699 
     
    
      70  
       0.007842 
       0.231775 
       1.533854 
       3.556741 
       0.978073 
     
    
      80  
       0.006889 
       0.210270 
       1.687870 
       3.740784 
       0.980980 
     
    
      90  
       0.006124 
       0.190196 
       1.854390 
       3.906308 
       0.983257 
     
    
      100 
       0.005504 
       0.175505 
       1.981879 
       4.059663 
       0.984741 
     
    
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
     
    
      9  
      110 
       0.002782 
       0.094374 
       2.797765 
       5.013485 
       0.996318 
     
    
      120 
       0.002512 
       0.082843 
       2.946283 
       5.152317 
       0.997680 
     
    
      130 
       0.002274 
       0.074714 
       3.098169 
       5.292548 
       0.998644 
     
    
      140 
       0.002081 
       0.068202 
       3.246845 
       5.417917 
       0.998906 
     
    
      150 
       0.001917 
       0.062985 
       3.362109 
       5.533344 
       0.999038 
     
    
      160 
       0.001772 
       0.058264 
       3.490930 
       5.643580 
       0.999168 
     
    
      170 
       0.001635 
       0.052899 
       3.638873 
       5.755664 
       0.999277 
     
    
      180 
       0.001525 
       0.049159 
       3.756998 
       5.854614 
       0.999349 
     
    
      190 
       0.001429 
       0.046101 
       3.860802 
       5.946728 
       0.999413 
     
    
      200 
       0.001334 
       0.042846 
       3.970926 
       6.043406 
       0.999467 
     
    
      10 
      10  
       0.018575 
       0.423196 
       0.474407 
       2.327416 
       0.944117 
     
    
      20  
       0.011957 
       0.332279 
       0.882937 
       2.945056 
       0.968691 
     
    
      30  
       0.008868 
       0.275008 
       1.207679 
       3.374942 
       0.977232 
     
    
      40  
       0.007049 
       0.227183 
       1.532244 
       3.704354 
       0.982189 
     
    
      50  
       0.005750 
       0.191070 
       1.819766 
       3.999339 
       0.985279 
     
    
      60  
       0.004828 
       0.165970 
       2.042113 
       4.240312 
       0.988533 
     
    
      70  
       0.004145 
       0.143698 
       2.262235 
       4.459335 
       0.991887 
     
    
      80  
       0.003604 
       0.125297 
       2.457762 
       4.651643 
       0.993959 
     
    
      90  
       0.003168 
       0.110530 
       2.640131 
       4.828030 
       0.995349 
     
    
      100 
       0.002814 
       0.099847 
       2.781825 
       4.990386 
       0.996665 
     
    
      110 
       0.002509 
       0.089355 
       2.934708 
       5.149199 
       0.997753 
     
    
      120 
       0.002257 
       0.076193 
       3.119781 
       5.296329 
       0.998078 
     
    
      130 
       0.002044 
       0.068117 
       3.288772 
       5.434620 
       0.998301 
     
    
      140 
       0.001865 
       0.061987 
       3.436399 
       5.562975 
       0.998488 
     
    
      150 
       0.001707 
       0.056384 
       3.599720 
       5.689856 
       0.998629 
     
    
      160 
       0.001572 
       0.051557 
       3.740192 
       5.806754 
       0.998754 
     
    
      170 
       0.001458 
       0.047120 
       3.856658 
       5.915552 
       0.998937 
     
    
      180 
       0.001354 
       0.043330 
       3.963846 
       6.020019 
       0.999090 
     
    
      190 
       0.001264 
       0.039919 
       4.069947 
       6.119300 
       0.999217 
     
    
      200 
       0.001179 
       0.036685 
       4.171292 
       6.217852 
       0.999405 
     
  
200 rows × 5 columns
In [24]:
    
v.mean(axis=0).unstack()[statistics_of_interest].sort("rms_error").head(20).join(vi)
v.mean(axis=0).unstack()[statistics_of_interest + ["min_original", "min_reconstructed", "max_original"]].sort("rms_error").head(20).join(vi)
v.loc(axis=0)[10,200].unstack()[statistics_of_interest].sort("rms_error").head(20).join(vi)
    
    Out[24]:
  
    
       
      rms_error 
      max_error 
      precisionbits 
      srr 
      correlation 
      levels 
      name 
     
    
      VARIABLE 
       
       
       
       
       
       
       
     
  
  
    
      Z3 
       0.000093 
       0.001825 
       8.09788 
       11.48360 
       1.000000 
       30 
                Geopotential Height (above sea level) 
     
    
      SL 
       0.000187 
       0.004193 
       6.89782 
       10.15920 
       1.000000 
       30 
                           Liquid water static energy 
     
    
      SLV 
       0.000187 
       0.004150 
       6.91255 
       10.15060 
       1.000000 
       30 
                        Liq wat virtual static energy 
     
    
      ABSORB 
       0.000347 
       0.051824 
       3.27025 
        4.95593 
       0.999481 
       30 
                                   Aerosol absorption 
     
    
      UFLX 
       0.000376 
       0.045725 
       3.45087 
        3.62299 
       0.996701 
       31 
                                  Zonal momentum flux 
     
    
      SNOWHICE 
       0.000386 
       0.008948 
       5.80428 
        8.26936 
       0.999995 
        1 
                          Water equivalent snow depth 
     
    
      EXTINCT 
       0.000392 
       0.048715 
       3.35948 
        5.41888 
       0.999727 
       30 
                                   Aerosol extinction 
     
    
      dst_a3 
       0.000459 
       0.037725 
       3.72834 
        4.72287 
       0.999283 
       30 
                                 dst_a3 concentration 
     
    
      T 
       0.000492 
       0.013920 
       5.16672 
        9.19041 
       0.999999 
       30 
                                          Temperature 
     
    
      LHFLX 
       0.000511 
       0.007705 
       6.01995 
        8.69611 
       0.999997 
        1 
                             Surface latent heat flux 
     
    
      num_a3 
       0.000511 
       0.039075 
       3.67762 
        5.15034 
       0.999603 
       30 
                                 num_a3 concentration 
     
    
      QFLX 
       0.000513 
       0.007708 
       6.01934 
        8.69396 
       0.999997 
        1 
                                   Surface water flux 
     
    
      dst_a1 
       0.000531 
       0.040611 
       3.62199 
        5.00558 
       0.999515 
       30 
                                 dst_a1 concentration 
     
    
      FSNT 
       0.000548 
       0.005119 
       6.60992 
        8.78762 
       0.999997 
        1 
                       Net solar flux at top of model 
     
    
      FSNTOA 
       0.000551 
       0.005012 
       6.64054 
        8.77884 
       0.999997 
        1 
                  Net solar flux at top of atmosphere 
     
    
      FSNS 
       0.000573 
       0.008808 
       5.82698 
        8.63233 
       0.999997 
        1 
                            Net solar flux at surface 
     
    
      VFLX 
       0.000573 
       0.044507 
       3.48981 
        3.28978 
       0.994758 
       31 
                              Meridional momentm flux 
     
    
      TSMN 
       0.000577 
       0.006990 
       6.16045 
        8.16407 
       0.999994 
        1 
       Minimum surface temperature over output period 
     
    
      TS 
       0.000577 
       0.006990 
       6.16045 
        8.16407 
       0.999994 
        1 
                      Surface temperature (radiative) 
     
    
      TSMX 
       0.000577 
       0.006990 
       6.16045 
        8.16407 
       0.999994 
        1 
       Maximum surface temperature over output period 
     
  
In [25]:
    
v.mean(axis=0).unstack()[statistics_of_interest].sort("max_error").head(20).join(vi)
v.loc(axis=0)[10,200].unstack()[statistics_of_interest].sort("max_error").head(20).join(vi)
    
    Out[25]:
  
    
       
      rms_error 
      max_error 
      precisionbits 
      srr 
      correlation 
      levels 
      name 
     
    
      VARIABLE 
       
       
       
       
       
       
       
     
  
  
    
      Z3 
       0.000093 
       0.001825 
       8.09788 
       11.48360 
       1.000000 
       30 
                  Geopotential Height (above sea level) 
     
    
      SLV 
       0.000187 
       0.004150 
       6.91255 
       10.15060 
       1.000000 
       30 
                          Liq wat virtual static energy 
     
    
      SL 
       0.000187 
       0.004193 
       6.89782 
       10.15920 
       1.000000 
       30 
                             Liquid water static energy 
     
    
      FSNTOA 
       0.000551 
       0.005012 
       6.64054 
        8.77884 
       0.999997 
        1 
                    Net solar flux at top of atmosphere 
     
    
      FSNT 
       0.000548 
       0.005119 
       6.60992 
        8.78762 
       0.999997 
        1 
                         Net solar flux at top of model 
     
    
      TREFHT 
       0.000698 
       0.006678 
       6.22644 
        7.93538 
       0.999992 
        1 
                           Reference height temperature 
     
    
      TSMX 
       0.000577 
       0.006990 
       6.16045 
        8.16407 
       0.999994 
        1 
         Maximum surface temperature over output period 
     
    
      TSMN 
       0.000577 
       0.006990 
       6.16045 
        8.16407 
       0.999994 
        1 
         Minimum surface temperature over output period 
     
    
      TS 
       0.000577 
       0.006990 
       6.16045 
        8.16407 
       0.999994 
        1 
                        Surface temperature (radiative) 
     
    
      FLUTC 
       0.000668 
       0.007469 
       6.06482 
        7.97354 
       0.999992 
        1 
       Clearsky upwelling longwave flux at top of model 
     
    
      FLNTC 
       0.000669 
       0.007475 
       6.06361 
        7.97172 
       0.999992 
        1 
             Clearsky net longwave flux at top of model 
     
    
      LHFLX 
       0.000511 
       0.007705 
       6.01995 
        8.69611 
       0.999997 
        1 
                               Surface latent heat flux 
     
    
      QFLX 
       0.000513 
       0.007708 
       6.01934 
        8.69396 
       0.999997 
        1 
                                     Surface water flux 
     
    
      SRFRAD 
       0.000633 
       0.008004 
       5.96512 
        8.37901 
       0.999995 
        1 
                          Net radiative flux at surface 
     
    
      FSNS 
       0.000573 
       0.008808 
       5.82698 
        8.63233 
       0.999997 
        1 
                              Net solar flux at surface 
     
    
      SNOWHICE 
       0.000386 
       0.008948 
       5.80428 
        8.26936 
       0.999995 
        1 
                            Water equivalent snow depth 
     
    
      SOLIN 
       0.001105 
       0.009228 
       5.75970 
        8.02962 
       0.999993 
        1 
                                       Solar insolation 
     
    
      FLUT 
       0.001242 
       0.010120 
       5.62666 
        7.13715 
       0.999975 
        1 
                Upwelling longwave flux at top of model 
     
    
      FLNT 
       0.001245 
       0.010166 
       5.62016 
        7.13376 
       0.999975 
        1 
                      Net longwave flux at top of model 
     
    
      FLDS 
       0.000942 
       0.010468 
       5.57788 
        7.62895 
       0.999987 
        1 
                   Downwelling longwave flux at surface 
     
  
In [26]:
    
#v.loc(axis=0)[8:10,:]#.mean(axis=0).unstack()[statistics_of_interest].sort("precisionbits", ascending=False).head(20).join(vi)
v.loc(axis=0)[8,170].unstack()[statistics_of_interest].sort("precisionbits", ascending=False).head(20).join(vi)
    
    Out[26]:
  
    
       
      rms_error 
      max_error 
      precisionbits 
      srr 
      correlation 
      levels 
      name 
     
    
      VARIABLE 
       
       
       
       
       
       
       
     
  
  
    
      Z3 
       0.000131 
       0.003796 
       7.04134 
       10.99390 
       1.000000 
       30 
                  Geopotential Height (above sea level) 
     
    
      TSMX 
       0.000772 
       0.008110 
       5.94603 
        7.74317 
       0.999989 
        1 
         Maximum surface temperature over output period 
     
    
      TSMN 
       0.000772 
       0.008110 
       5.94603 
        7.74317 
       0.999989 
        1 
         Minimum surface temperature over output period 
     
    
      TS 
       0.000772 
       0.008110 
       5.94603 
        7.74317 
       0.999989 
        1 
                        Surface temperature (radiative) 
     
    
      SL 
       0.000256 
       0.008121 
       5.94406 
        9.70447 
       0.999999 
       30 
                             Liquid water static energy 
     
    
      SLV 
       0.000256 
       0.008123 
       5.94381 
        9.69628 
       0.999999 
       30 
                          Liq wat virtual static energy 
     
    
      FLUTC 
       0.000880 
       0.009109 
       5.77850 
        7.57660 
       0.999986 
        1 
       Clearsky upwelling longwave flux at top of model 
     
    
      FLNTC 
       0.000880 
       0.009172 
       5.76849 
        7.57549 
       0.999986 
        1 
             Clearsky net longwave flux at top of model 
     
    
      TREFHT 
       0.000874 
       0.009189 
       5.76585 
        7.61042 
       0.999987 
        1 
                           Reference height temperature 
     
    
      QFLX 
       0.000783 
       0.010223 
       5.61197 
        8.08239 
       0.999993 
        1 
                                     Surface water flux 
     
    
      LHFLX 
       0.000783 
       0.010325 
       5.59771 
        8.08133 
       0.999993 
        1 
                               Surface latent heat flux 
     
    
      TROP_Z 
       0.001536 
       0.013820 
       5.17709 
        7.33894 
       0.999981 
        1 
                                      Tropopause Height 
     
    
      FLDS 
       0.001150 
       0.014327 
       5.12512 
        7.34209 
       0.999981 
        1 
                   Downwelling longwave flux at surface 
     
    
      FLUT 
       0.001656 
       0.016283 
       4.94048 
        6.72229 
       0.999955 
        1 
                Upwelling longwave flux at top of model 
     
    
      FLNT 
       0.001658 
       0.016320 
       4.93724 
        6.71986 
       0.999955 
        1 
                      Net longwave flux at top of model 
     
    
      AODVIS 
       0.001036 
       0.016544 
       4.91755 
        5.75488 
       0.999829 
        1 
                           Aerosol optical depth 550 nm 
     
    
      AEROD_v 
       0.001036 
       0.016544 
       4.91755 
        5.75488 
       0.999829 
        1 
            Total Aerosol Optical Depth in visible band 
     
    
      BURDEN1 
       0.001373 
       0.017326 
       4.85088 
        5.67473 
       0.999808 
        1 
                                  Aerosol burden mode 1 
     
    
      AODMODE1 
       0.002187 
       0.017587 
       4.82932 
        5.49059 
       0.999753 
        1 
                    Aerosol optical depth 550 nm mode 1 
     
    
      TMQ 
       0.001359 
       0.017731 
       4.81756 
        7.49127 
       0.999985 
        1 
       Total (vertically integrated) precipitable water 
     
  
In [27]:
    
#v.mean(axis=0).unstack()[statistics_of_interest].sort("rms_error", ascending=False).head(20).join(vi)
v.loc(axis=0)[10,200].unstack()[statistics_of_interest].sort("rms_error", ascending=False).head(20).join(vi)
    
    Out[27]:
  
    
       
      rms_error 
      max_error 
      precisionbits 
      srr 
      correlation 
      levels 
      name 
     
    
      VARIABLE 
       
       
       
       
       
       
       
     
  
  
    
      SSTSFMBL 
       0.002599 
       0.062668 
       2.99611 
       6.28976 
       0.999918 
        1 
                            Mobilization flux at surface 
     
    
      CLDMED 
       0.002491 
       0.030366 
       4.04140 
       6.07505 
       0.999890 
        1 
                   Vertically-integrated mid-level cloud 
     
    
      PSL 
       0.002299 
       0.024323 
       4.36156 
       6.29992 
       0.999919 
        1 
                                      Sea level pressure 
     
    
      FREQZM 
       0.002256 
       0.022684 
       4.46221 
       6.60402 
       0.999947 
        1 
                   Fractional occurance of ZM convection 
     
    
      FREQS 
       0.002167 
       0.051397 
       3.28217 
       6.26081 
       0.999915 
       30 
                            Fractional occurance of snow 
     
    
      TOT_ICLD_VISTAU 
       0.002156 
       0.137734 
       1.86004 
       4.22326 
       0.998566 
       30 
       Total in-cloud extinction visible sw optical d... 
     
    
      PRECSL 
       0.002120 
       0.077733 
       2.68533 
       5.59529 
       0.999786 
        1 
       Large-scale (stable) snow rate (water equivalent) 
     
    
      AODMODE2 
       0.002118 
       0.048138 
       3.37669 
       4.27573 
       0.998666 
        1 
                     Aerosol optical depth 550 nm mode 2 
     
    
      PRECSC 
       0.002112 
       0.145466 
       1.78125 
       4.80423 
       0.999359 
        1 
                 Convective snow rate (water equivalent) 
     
    
      CLDHGH 
       0.002105 
       0.022417 
       4.47926 
       6.13657 
       0.999899 
        1 
                        Vertically-integrated high cloud 
     
    
      FICE 
       0.002078 
       0.080303 
       2.63840 
       7.15372 
       0.999975 
       30 
                     Fractional ice content within cloud 
     
    
      ANRAIN 
       0.002065 
       0.118444 
       2.07772 
       4.51513 
       0.999043 
       30 
                                Average rain number conc 
     
    
      SSAVIS 
       0.002043 
       0.019640 
       4.67005 
       6.58229 
       0.999946 
        1 
                           Aerosol singel-scatter albedo 
     
    
      CDNUMC 
       0.002041 
       0.028572 
       4.12927 
       5.44676 
       0.999737 
        1 
             Vertically-integrated droplet concentration 
     
    
      TAUX 
       0.002005 
       0.037994 
       3.71808 
       5.60743 
       0.999790 
        1 
                                    Zonal surface stress 
     
    
      T850 
       0.002000 
       0.023772 
       4.39457 
       6.26535 
       0.999915 
        1 
                Temperature at 850 mbar pressure surface 
     
    
      PRECSH 
       0.001989 
       0.054360 
       3.20131 
       5.06256 
       0.999552 
        1 
                   Shallow Convection precipitation rate 
     
    
      CLOUD 
       0.001950 
       0.038775 
       3.68873 
       6.15884 
       0.999902 
       30 
                                          Cloud fraction 
     
    
      AREI 
       0.001916 
       0.039118 
       3.67602 
       5.96171 
       0.999871 
       30 
                            Average ice effective radius 
     
    
      BURDEN2 
       0.001903 
       0.030185 
       4.05005 
       4.68276 
       0.999242 
        1 
                                   Aerosol burden mode 2 
     
  
In [28]:
    
#v.mean(axis=0).unstack()[statistics_of_interest].sort("max_error", ascending=False).head(20).join(vi)
v.loc(axis=0)[10,200].unstack()[statistics_of_interest].sort("max_error", ascending=False).head(20).join(vi)
    
    Out[28]:
  
    
       
      rms_error 
      max_error 
      precisionbits 
      srr 
      correlation 
      levels 
      name 
     
    
      VARIABLE 
       
       
       
       
       
       
       
     
  
  
    
      H2SO4 
       0.001470 
       0.190855 
       1.38945 
       4.13879 
       0.998387 
       30 
                                     H2SO4 concentration 
     
    
      PRECSC 
       0.002112 
       0.145466 
       1.78125 
       4.80423 
       0.999359 
        1 
                 Convective snow rate (water equivalent) 
     
    
      TOT_ICLD_VISTAU 
       0.002156 
       0.137734 
       1.86004 
       4.22326 
       0.998566 
       30 
       Total in-cloud extinction visible sw optical d... 
     
    
      DSTSFMBL 
       0.001454 
       0.136540 
       1.87260 
       2.42167 
       0.982428 
        1 
                            Mobilization flux at surface 
     
    
      dst_a1SF 
       0.001454 
       0.136540 
       1.87260 
       2.42167 
       0.982428 
        1 
                            dst_a1 dust surface emission 
     
    
      dst_a3SF 
       0.001454 
       0.136540 
       1.87260 
       2.42167 
       0.982428 
        1 
                            dst_a3 dust surface emission 
     
    
      ANRAIN 
       0.002065 
       0.118444 
       2.07772 
       4.51513 
       0.999043 
       30 
                                Average rain number conc 
     
    
      QC 
       0.001253 
       0.109353 
       2.19294 
       5.66345 
       0.999805 
       30 
               Q tendency - shallow convection LW export 
     
    
      DMS 
       0.000813 
       0.102966 
       2.27976 
       6.07825 
       0.999890 
       30 
                                       DMS concentration 
     
    
      CMFDQR 
       0.001215 
       0.084831 
       2.55926 
       5.09065 
       0.999569 
       30 
                 Q tendency - shallow convection rainout 
     
    
      ICWMR 
       0.001392 
       0.082268 
       2.60352 
       5.87033 
       0.999854 
       30 
                  Prognostic in-cloud water mixing ratio 
     
    
      FICE 
       0.002078 
       0.080303 
       2.63840 
       7.15372 
       0.999975 
       30 
                     Fractional ice content within cloud 
     
    
      PRECSL 
       0.002120 
       0.077733 
       2.68533 
       5.59529 
       0.999786 
        1 
       Large-scale (stable) snow rate (water equivalent) 
     
    
      wat_a2 
       0.000766 
       0.075513 
       2.72713 
       4.33234 
       0.998767 
       30 
                    aerosol water, interstitial, mode 02 
     
    
      so4_a2 
       0.000856 
       0.071282 
       2.81032 
       3.83542 
       0.997543 
       30 
                                    so4_a2 concentration 
     
    
      AREL 
       0.001548 
       0.071075 
       2.81450 
       6.15519 
       0.999902 
       30 
                        Average droplet effective radius 
     
    
      ICIMR 
       0.001259 
       0.070788 
       2.82035 
       5.20809 
       0.999634 
       30 
                    Prognostic in-cloud ice mixing ratio 
     
    
      ANSNOW 
       0.001686 
       0.070543 
       2.82536 
       3.36209 
       0.995260 
       30 
                                Average snow number conc 
     
    
      CMFMCDZM 
       0.001409 
       0.066729 
       2.90554 
       5.67453 
       0.999808 
       31 
                       Convection mass flux from ZM deep 
     
    
      SO2 
       0.000983 
       0.065008 
       2.94325 
       4.54293 
       0.999079 
       30 
                                       SO2 concentration 
     
  
In [29]:
    
# good variables
v.loc(axis=1)[("VT","V","Z3"),statistics_of_interest]
    
    Out[29]:
  
    
       
      VARIABLE 
      V 
      VT 
      Z3 
     
    
       
      STATISTIC 
      correlation 
      max_error 
      precisionbits 
      rms_error 
      srr 
      correlation 
      max_error 
      precisionbits 
      rms_error 
      srr 
      correlation 
      max_error 
      precisionbits 
      rms_error 
      srr 
     
    
      K 
      M 
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
     
  
  
    
      1  
      10  
       0.759554 
       0.320530 
       0.641468 
       0.032731 
       0.620503 
       0.771228 
       0.311654 
       0.681982 
       0.034773 
       0.651632 
       0.999724 
       0.090627 
       2.46391 
       0.006284 
        5.41227 
     
    
      20  
       0.939839 
       0.263703 
       0.923015 
       0.017191 
       1.549550 
       0.939986 
       0.253047 
       0.982523 
       0.018639 
       1.551250 
       0.999890 
       0.050173 
       3.31695 
       0.003960 
        6.07840 
     
    
      30  
       0.959991 
       0.268408 
       0.897502 
       0.014092 
       1.836340 
       0.961757 
       0.251442 
       0.991700 
       0.014962 
       1.868250 
       0.999963 
       0.022637 
       4.46516 
       0.002298 
        6.86389 
     
    
      40  
       0.975119 
       0.238931 
       1.065340 
       0.011156 
       2.173420 
       0.976241 
       0.223306 
       1.162910 
       0.011837 
       2.206320 
       0.999978 
       0.020145 
       4.63341 
       0.001795 
        7.21998 
     
    
      50  
       0.982843 
       0.187085 
       1.418230 
       0.009281 
       2.438760 
       0.983566 
       0.172454 
       1.535710 
       0.009863 
       2.469520 
       0.999988 
       0.014424 
       5.11535 
       0.001310 
        7.67483 
     
    
      60  
       0.988409 
       0.174232 
       1.520920 
       0.007639 
       2.719650 
       0.988806 
       0.194202 
       1.364370 
       0.008151 
       2.744630 
       0.999993 
       0.013711 
       5.18849 
       0.000975 
        8.09981 
     
    
      70  
       0.991538 
       0.163582 
       1.611920 
       0.006533 
       2.945430 
       0.991852 
       0.178074 
       1.489450 
       0.006959 
       2.972610 
       0.999995 
       0.013992 
       5.15926 
       0.000843 
        8.30956 
     
    
      80  
       0.993840 
       0.146122 
       1.774760 
       0.005577 
       3.173600 
       0.993966 
       0.157166 
       1.669640 
       0.005992 
       3.188540 
       0.999996 
       0.013241 
       5.23886 
       0.000744 
        8.48994 
     
    
      90  
       0.995141 
       0.106122 
       2.236210 
       0.004955 
       3.344290 
       0.995184 
       0.110362 
       2.179690 
       0.005355 
       3.350760 
       0.999998 
       0.007202 
       6.11745 
       0.000597 
        8.80894 
     
    
      100 
       0.996077 
       0.101506 
       2.300360 
       0.004453 
       3.498310 
       0.996068 
       0.103150 
       2.277190 
       0.004839 
       3.496770 
       0.999998 
       0.006912 
       6.17669 
       0.000534 
        8.96871 
     
    
      110 
       0.996675 
       0.089815 
       2.476890 
       0.004100 
       3.617320 
       0.996695 
       0.089859 
       2.476190 
       0.004437 
       3.621870 
       0.999998 
       0.005892 
       6.40714 
       0.000483 
        9.11338 
     
    
      120 
       0.997084 
       0.083291 
       2.585700 
       0.003840 
       3.711940 
       0.997108 
       0.082948 
       2.591650 
       0.004152 
       3.717870 
       0.999999 
       0.005536 
       6.49681 
       0.000441 
        9.24373 
     
    
      130 
       0.997536 
       0.072485 
       2.786170 
       0.003531 
       3.833180 
       0.997563 
       0.075215 
       2.732830 
       0.003811 
       3.841210 
       0.999999 
       0.005233 
       6.57819 
       0.000399 
        9.38973 
     
    
      140 
       0.997869 
       0.066151 
       2.918100 
       0.003283 
       3.937990 
       0.997911 
       0.069813 
       2.840360 
       0.003529 
       3.952110 
       0.999999 
       0.005101 
       6.61512 
       0.000364 
        9.52295 
     
    
      150 
       0.998157 
       0.066450 
       2.911580 
       0.003054 
       4.042600 
       0.998210 
       0.066712 
       2.905900 
       0.003267 
       4.063500 
       0.999999 
       0.004958 
       6.65592 
       0.000335 
        9.64386 
     
    
      160 
       0.998353 
       0.064536 
       2.953760 
       0.002887 
       4.123530 
       0.998402 
       0.067213 
       2.895130 
       0.003087 
       4.145230 
       0.999999 
       0.004690 
       6.73611 
       0.000309 
        9.75640 
     
    
      170 
       0.998502 
       0.064745 
       2.949080 
       0.002753 
       4.191940 
       0.998545 
       0.065323 
       2.936280 
       0.002946 
       4.212860 
       0.999999 
       0.004549 
       6.78029 
       0.000292 
        9.84042 
     
    
      180 
       0.998681 
       0.062756 
       2.994100 
       0.002584 
       4.283770 
       0.998735 
       0.062751 
       2.994220 
       0.002747 
       4.313620 
       0.999999 
       0.004437 
       6.81630 
       0.000275 
        9.92714 
     
    
      190 
       0.998850 
       0.057343 
       3.124250 
       0.002413 
       4.382360 
       0.998895 
       0.055635 
       3.167860 
       0.002567 
       4.411400 
       1.000000 
       0.004366 
       6.83947 
       0.000250 
       10.06400 
     
    
      200 
       0.998977 
       0.054628 
       3.194210 
       0.002275 
       4.467070 
       0.999024 
       0.055729 
       3.165430 
       0.002413 
       4.500780 
       1.000000 
       0.004104 
       6.92888 
       0.000230 
       10.18420 
     
    
      2  
      10  
       0.828131 
       0.279177 
       0.840749 
       0.028207 
       0.835124 
       0.830367 
       0.306200 
       0.707454 
       0.030439 
       0.843688 
       0.999780 
       0.087599 
       2.51294 
       0.005609 
        5.57619 
     
    
      20  
       0.948576 
       0.264394 
       0.919238 
       0.015929 
       1.659500 
       0.949386 
       0.249217 
       1.004530 
       0.017159 
       1.670640 
       0.999944 
       0.051610 
       3.27621 
       0.002840 
        6.55827 
     
    
      30  
       0.970886 
       0.223072 
       1.164420 
       0.012054 
       2.061640 
       0.972108 
       0.212997 
       1.231100 
       0.012812 
       2.092130 
       0.999976 
       0.042172 
       3.56758 
       0.001864 
        7.16559 
     
    
      40  
       0.981364 
       0.186594 
       1.422020 
       0.009670 
       2.379620 
       0.981894 
       0.174893 
       1.515450 
       0.010348 
       2.400240 
       0.999986 
       0.032357 
       3.94977 
       0.001405 
        7.57340 
     
    
      50  
       0.988615 
       0.160850 
       1.636210 
       0.007572 
       2.732480 
       0.988912 
       0.174811 
       1.516130 
       0.008112 
       2.751420 
       0.999993 
       0.028359 
       4.14005 
       0.001026 
        8.02685 
     
    
      60  
       0.992338 
       0.140735 
       1.828950 
       0.006217 
       3.016800 
       0.992501 
       0.147790 
       1.758380 
       0.006677 
       3.032230 
       0.999995 
       0.017476 
       4.83848 
       0.000880 
        8.24898 
     
    
      70  
       0.994569 
       0.106140 
       2.235960 
       0.005237 
       3.264280 
       0.994592 
       0.111549 
       2.164250 
       0.005674 
       3.267270 
       0.999997 
       0.014754 
       5.08277 
       0.000703 
        8.57239 
     
    
      80  
       0.995860 
       0.094937 
       2.396890 
       0.004574 
       3.459530 
       0.995837 
       0.099517 
       2.328920 
       0.004980 
       3.455520 
       0.999997 
       0.015572 
       5.00486 
       0.000616 
        8.76409 
     
    
      90  
       0.996790 
       0.076823 
       2.702330 
       0.004029 
       3.642780 
       0.996771 
       0.085668 
       2.545100 
       0.004386 
       3.638490 
       0.999998 
       0.012530 
       5.31844 
       0.000533 
        8.97106 
     
    
      100 
       0.997377 
       0.072244 
       2.790980 
       0.003642 
       3.788300 
       0.997370 
       0.075306 
       2.731090 
       0.003959 
       3.786240 
       0.999998 
       0.012194 
       5.35765 
       0.000484 
        9.11030 
     
    
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
     
    
      9  
      110 
       0.999259 
       0.040171 
       3.637690 
       0.001937 
       4.699160 
       0.999249 
       0.037627 
       3.732100 
       0.002116 
       4.690010 
       1.000000 
       0.005735 
       6.44598 
       0.000226 
       10.20760 
     
    
      120 
       0.999380 
       0.031648 
       3.981730 
       0.001772 
       4.827430 
       0.999373 
       0.029946 
       4.061490 
       0.001935 
       4.819320 
       1.000000 
       0.005295 
       6.56127 
       0.000206 
       10.34540 
     
    
      130 
       0.999468 
       0.030439 
       4.037950 
       0.001642 
       4.937930 
       0.999461 
       0.029962 
       4.060730 
       0.001793 
       4.928880 
       1.000000 
       0.004524 
       6.78831 
       0.000186 
       10.49330 
     
    
      140 
       0.999550 
       0.029633 
       4.076630 
       0.001509 
       5.059320 
       0.999547 
       0.028917 
       4.111960 
       0.001644 
       5.054040 
       1.000000 
       0.003860 
       7.01734 
       0.000169 
       10.63250 
     
    
      150 
       0.999616 
       0.025663 
       4.284160 
       0.001394 
       5.174160 
       0.999614 
       0.024657 
       4.341830 
       0.001518 
       5.169490 
       1.000000 
       0.003367 
       7.21443 
       0.000154 
       10.75840 
     
    
      160 
       0.999672 
       0.024224 
       4.367390 
       0.001289 
       5.287170 
       0.999670 
       0.023745 
       4.396240 
       0.001403 
       5.283260 
       1.000000 
       0.002772 
       7.49461 
       0.000139 
       10.90840 
     
    
      170 
       0.999714 
       0.021305 
       4.552670 
       0.001204 
       5.385300 
       0.999712 
       0.019384 
       4.688980 
       0.001310 
       5.382090 
       1.000000 
       0.002503 
       7.64214 
       0.000131 
       10.99800 
     
    
      180 
       0.999752 
       0.019196 
       4.703050 
       0.001121 
       5.488490 
       0.999750 
       0.017616 
       4.826950 
       0.001220 
       5.484260 
       1.000000 
       0.002164 
       7.85212 
       0.000120 
       11.11970 
     
    
      190 
       0.999782 
       0.017925 
       4.801860 
       0.001051 
       5.581670 
       0.999781 
       0.017569 
       4.830810 
       0.001144 
       5.577930 
       1.000000 
       0.002007 
       7.96039 
       0.000110 
       11.24430 
     
    
      200 
       0.999811 
       0.014866 
       5.071860 
       0.000978 
       5.685620 
       0.999810 
       0.014415 
       5.116290 
       0.001064 
       5.682640 
       1.000000 
       0.001893 
       8.04499 
       0.000102 
       11.35870 
     
    
      10 
      10  
       0.938356 
       0.219047 
       1.190680 
       0.017395 
       1.532530 
       0.937673 
       0.245176 
       1.028110 
       0.018984 
       1.524840 
       0.999965 
       0.050638 
       3.30363 
       0.002227 
        6.90862 
     
    
      20  
       0.980932 
       0.128987 
       1.954700 
       0.009780 
       2.363250 
       0.980456 
       0.145464 
       1.781270 
       0.010747 
       2.345640 
       0.999989 
       0.027260 
       4.19706 
       0.001264 
        7.72586 
     
    
      30  
       0.991326 
       0.085235 
       2.552410 
       0.006614 
       2.927680 
       0.991277 
       0.088651 
       2.495710 
       0.007199 
       2.923630 
       0.999995 
       0.024174 
       4.37043 
       0.000821 
        8.34938 
     
    
      40  
       0.994860 
       0.073429 
       2.767500 
       0.005096 
       3.303830 
       0.994780 
       0.074613 
       2.744430 
       0.005574 
       3.292780 
       0.999997 
       0.019051 
       4.71397 
       0.000639 
        8.70910 
     
    
      50  
       0.996679 
       0.056184 
       3.153700 
       0.004098 
       3.618300 
       0.996609 
       0.063071 
       2.986870 
       0.004495 
       3.603220 
       0.999998 
       0.013844 
       5.17463 
       0.000515 
        9.02239 
     
    
      60  
       0.997705 
       0.048836 
       3.355910 
       0.003408 
       3.884390 
       0.997663 
       0.051763 
       3.271940 
       0.003733 
       3.871370 
       0.999999 
       0.010995 
       5.50702 
       0.000429 
        9.28605 
     
    
      70  
       0.998351 
       0.041459 
       3.592180 
       0.002889 
       4.122550 
       0.998313 
       0.046638 
       3.422350 
       0.003172 
       4.106350 
       0.999999 
       0.009853 
       5.66527 
       0.000344 
        9.60491 
     
    
      80  
       0.998746 
       0.039205 
       3.672810 
       0.002520 
       4.319950 
       0.998719 
       0.041360 
       3.595630 
       0.002764 
       4.304850 
       0.999999 
       0.005462 
       6.51638 
       0.000287 
        9.86289 
     
    
      90  
       0.999021 
       0.036553 
       3.773880 
       0.002226 
       4.498400 
       0.999006 
       0.039500 
       3.662010 
       0.002436 
       4.487260 
       1.000000 
       0.004720 
       6.72692 
       0.000255 
       10.03280 
     
    
      100 
       0.999215 
       0.036223 
       3.786950 
       0.001994 
       4.657700 
       0.999203 
       0.039248 
       3.671250 
       0.002180 
       4.646930 
       1.000000 
       0.004663 
       6.74462 
       0.000229 
       10.18750 
     
    
      110 
       0.999360 
       0.032390 
       3.948300 
       0.001800 
       4.805020 
       0.999353 
       0.034504 
       3.857110 
       0.001965 
       4.797270 
       1.000000 
       0.004514 
       6.79134 
       0.000200 
       10.38310 
     
    
      120 
       0.999468 
       0.025774 
       4.277930 
       0.001641 
       4.938570 
       0.999464 
       0.027569 
       4.180820 
       0.001789 
       4.932490 
       1.000000 
       0.004357 
       6.84233 
       0.000179 
       10.54510 
     
    
      130 
       0.999558 
       0.023009 
       4.441670 
       0.001497 
       5.071420 
       0.999554 
       0.026040 
       4.263130 
       0.001630 
       5.066280 
       1.000000 
       0.003736 
       7.06434 
       0.000162 
       10.68880 
     
    
      140 
       0.999621 
       0.019998 
       4.644020 
       0.001386 
       5.182670 
       0.999619 
       0.023862 
       4.389130 
       0.001507 
       5.179980 
       1.000000 
       0.003555 
       7.13587 
       0.000147 
       10.83130 
     
    
      150 
       0.999676 
       0.018024 
       4.793960 
       0.001281 
       5.295760 
       0.999676 
       0.021087 
       4.567490 
       0.001390 
       5.296720 
       1.000000 
       0.003101 
       7.33307 
       0.000135 
       10.95510 
     
    
      160 
       0.999727 
       0.016863 
       4.890000 
       0.001176 
       5.419450 
       0.999727 
       0.018639 
       4.745550 
       0.001276 
       5.419800 
       1.000000 
       0.002720 
       7.52227 
       0.000126 
       11.05260 
     
    
      170 
       0.999766 
       0.016409 
       4.929370 
       0.001089 
       5.529700 
       0.999766 
       0.019072 
       4.712400 
       0.001182 
       5.530120 
       1.000000 
       0.002374 
       7.71851 
       0.000117 
       11.15940 
     
    
      180 
       0.999797 
       0.015076 
       5.051600 
       0.001013 
       5.634640 
       0.999797 
       0.017163 
       4.864520 
       0.001100 
       5.633670 
       1.000000 
       0.001990 
       7.97330 
       0.000109 
       11.26720 
     
    
      190 
       0.999824 
       0.013711 
       5.188570 
       0.000945 
       5.734670 
       0.999823 
       0.015473 
       5.014100 
       0.001027 
       5.732990 
       1.000000 
       0.001856 
       8.07381 
       0.000101 
       11.37100 
     
    
      200 
       0.999845 
       0.012854 
       5.281600 
       0.000886 
       5.827290 
       0.999844 
       0.015292 
       5.031090 
       0.000964 
       5.824980 
       1.000000 
       0.001825 
       8.09788 
       0.000093 
       11.48360 
     
  
200 rows × 15 columns
In [30]:
    
# bad variables
v.loc(axis=1)[("soa_a2","CMFDQR","TOT_ICLD_VISTAU"),statistics_of_interest]
    
    Out[30]:
  
    
       
      VARIABLE 
      CMFDQR 
      TOT_ICLD_VISTAU 
      soa_a2 
     
    
       
      STATISTIC 
      correlation 
      max_error 
      precisionbits 
      rms_error 
      srr 
      correlation 
      max_error 
      precisionbits 
      rms_error 
      srr 
      correlation 
      max_error 
      precisionbits 
      rms_error 
      srr 
     
    
      K 
      M 
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
     
  
  
    
      1  
      10  
       0.935128 
       0.831227 
      -0.733315 
       0.014663 
       1.49691 
       0.870440 
       0.863806 
      -0.788780 
       0.019822 
       1.02246 
       0.809418 
       0.838487 
      -0.745860 
       0.016882 
       0.767995 
     
    
      20  
       0.959301 
       0.800885 
      -0.679667 
       0.011686 
       1.82427 
       0.911693 
       0.857936 
      -0.778943 
       0.016545 
       1.28324 
       0.840783 
       0.769293 
      -0.621606 
       0.015564 
       0.885305 
     
    
      30  
       0.975111 
       0.751592 
      -0.588022 
       0.009176 
       2.17321 
       0.926705 
       0.845402 
      -0.757710 
       0.015132 
       1.41200 
       0.857900 
       0.758325 
      -0.600888 
       0.014772 
       0.960673 
     
    
      40  
       0.979653 
       0.717059 
      -0.520163 
       0.008306 
       2.31689 
       0.937850 
       0.820705 
      -0.714935 
       0.013974 
       1.52682 
       0.889726 
       0.613881 
      -0.296031 
       0.013124 
       1.131330 
     
    
      50  
       0.982807 
       0.708659 
      -0.503164 
       0.007641 
       2.43723 
       0.942555 
       0.787982 
      -0.656234 
       0.013451 
       1.58186 
       0.920090 
       0.550637 
      -0.139174 
       0.011261 
       1.352150 
     
    
      60  
       0.987623 
       0.659105 
      -0.398581 
       0.006491 
       2.67258 
       0.946721 
       0.774796 
      -0.631888 
       0.012968 
       1.63462 
       0.929854 
       0.514995 
      -0.042630 
       0.010578 
       1.442500 
     
    
      70  
       0.989639 
       0.623518 
      -0.318504 
       0.005942 
       2.80009 
       0.949942 
       0.759654 
      -0.603415 
       0.012580 
       1.67842 
       0.950426 
       0.413015 
       0.275734 
       0.008940 
       1.685230 
     
    
      80  
       0.990371 
       0.589952 
      -0.238671 
       0.005729 
       2.85270 
       0.952737 
       0.753228 
      -0.591158 
       0.012233 
       1.71882 
       0.971575 
       0.278263 
       0.845477 
       0.006806 
       2.078670 
     
    
      90  
       0.992180 
       0.569403 
      -0.187521 
       0.005165 
       3.00216 
       0.954899 
       0.736276 
      -0.558320 
       0.011956 
       1.75180 
       0.977740 
       0.249791 
       1.001210 
       0.006032 
       2.252790 
     
    
      100 
       0.992780 
       0.554584 
      -0.149479 
       0.004964 
       3.05947 
       0.957160 
       0.679558 
      -0.442668 
       0.011660 
       1.78806 
       0.980667 
       0.244702 
       1.030900 
       0.005626 
       2.353410 
     
    
      110 
       0.993953 
       0.542598 
      -0.117956 
       0.004544 
       3.18701 
       0.960097 
       0.666384 
      -0.414425 
       0.011261 
       1.83822 
       0.985863 
       0.153256 
       1.705980 
       0.004817 
       2.577280 
     
    
      120 
       0.994932 
       0.519463 
      -0.055093 
       0.004161 
       3.31402 
       0.962402 
       0.627323 
      -0.327280 
       0.010938 
       1.88028 
       0.987739 
       0.146190 
       1.774080 
       0.004488 
       2.679300 
     
    
      130 
       0.995421 
       0.501562 
      -0.004500 
       0.003956 
       3.38702 
       0.965034 
       0.606819 
      -0.279338 
       0.010555 
       1.93168 
       0.989478 
       0.143896 
       1.796900 
       0.004160 
       2.789020 
     
    
      140 
       0.995905 
       0.488652 
       0.033122 
       0.003741 
       3.46749 
       0.968775 
       0.567734 
      -0.183287 
       0.009984 
       2.01193 
       0.990887 
       0.139391 
       1.842790 
       0.003872 
       2.892220 
     
    
      150 
       0.996262 
       0.482382 
       0.051751 
       0.003575 
       3.53320 
       0.974092 
       0.504621 
      -0.013273 
       0.009106 
       2.14463 
       0.991439 
       0.140358 
       1.832820 
       0.003754 
       2.937070 
     
    
      160 
       0.996585 
       0.462576 
       0.112237 
       0.003417 
       3.59812 
       0.978702 
       0.461445 
       0.115769 
       0.008266 
       2.28428 
       0.992045 
       0.136778 
       1.870100 
       0.003619 
       2.989810 
     
    
      170 
       0.996834 
       0.455777 
       0.133599 
       0.003290 
       3.65281 
       0.982388 
       0.439786 
       0.185125 
       0.007524 
       2.42005 
       0.992472 
       0.135538 
       1.883230 
       0.003521 
       3.029450 
     
    
      180 
       0.997039 
       0.451629 
       0.146791 
       0.003182 
       3.70087 
       0.984406 
       0.435556 
       0.199071 
       0.007083 
       2.50707 
       0.992804 
       0.132499 
       1.915940 
       0.003443 
       3.061940 
     
    
      190 
       0.997455 
       0.418412 
       0.257004 
       0.002951 
       3.81006 
       0.985725 
       0.434351 
       0.203067 
       0.006779 
       2.57034 
       0.993454 
       0.128531 
       1.959810 
       0.003284 
       3.129920 
     
    
      200 
       0.997613 
       0.414881 
       0.269230 
       0.002858 
       3.85611 
       0.987671 
       0.390035 
       0.358325 
       0.006304 
       2.67536 
       0.993719 
       0.123898 
       2.012780 
       0.003217 
       3.159640 
     
    
      2  
      10  
       0.949138 
       0.813521 
      -0.702251 
       0.013031 
       1.66721 
       0.892951 
       0.863536 
      -0.788329 
       0.018126 
       1.15151 
       0.829051 
       0.777192 
      -0.636344 
       0.016076 
       0.838632 
     
    
      20  
       0.970152 
       0.783346 
      -0.647722 
       0.010036 
       2.04395 
       0.924748 
       0.858885 
      -0.780537 
       0.015325 
       1.39373 
       0.866331 
       0.704763 
      -0.495210 
       0.014359 
       1.001530 
     
    
      30  
       0.978628 
       0.712064 
      -0.510078 
       0.008510 
       2.28182 
       0.936154 
       0.823370 
      -0.719613 
       0.014157 
       1.50804 
       0.888868 
       0.622119 
      -0.315262 
       0.013172 
       1.126070 
     
    
      40  
       0.984223 
       0.675823 
      -0.434717 
       0.007322 
       2.49874 
       0.943942 
       0.785738 
      -0.652121 
       0.013293 
       1.59897 
       0.911623 
       0.570566 
      -0.190466 
       0.011817 
       1.282700 
     
    
      50  
       0.988058 
       0.639539 
      -0.355105 
       0.006377 
       2.69820 
       0.947997 
       0.774591 
      -0.631507 
       0.012816 
       1.65164 
       0.936417 
       0.527587 
      -0.077480 
       0.010088 
       1.510920 
     
    
      60  
       0.989998 
       0.589637 
      -0.237900 
       0.005839 
       2.82538 
       0.951813 
       0.759592 
      -0.603296 
       0.012349 
       1.70520 
       0.964057 
       0.433893 
       0.204589 
       0.007638 
       1.912160 
     
    
      70  
       0.991834 
       0.564117 
      -0.174067 
       0.005278 
       2.97102 
       0.954354 
       0.755894 
      -0.596256 
       0.012027 
       1.74334 
       0.973692 
       0.355067 
       0.493838 
       0.006551 
       2.133730 
     
    
      80  
       0.993477 
       0.551282 
      -0.140863 
       0.004719 
       3.13244 
       0.957142 
       0.717281 
      -0.520611 
       0.011662 
       1.78777 
       0.977930 
       0.317480 
       0.655262 
       0.006007 
       2.258880 
     
    
      90  
       0.994357 
       0.520672 
      -0.058447 
       0.004390 
       3.23675 
       0.959912 
       0.665832 
      -0.413229 
       0.011287 
       1.83495 
       0.985386 
       0.227607 
       1.135380 
       0.004897 
       2.553540 
     
    
      100 
       0.995071 
       0.509298 
      -0.026581 
       0.004104 
       3.33399 
       0.962418 
       0.635019 
      -0.344871 
       0.010935 
       1.88059 
       0.987838 
       0.210362 
       1.249060 
       0.004470 
       2.685130 
     
    
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
      ... 
     
    
      9  
      110 
       0.998554 
       0.218972 
       1.191180 
       0.002225 
       4.21749 
       0.988178 
       0.328525 
       0.605926 
       0.006173 
       2.70548 
       0.996508 
       0.184582 
       1.437660 
       0.002400 
       3.582180 
     
    
      120 
       0.998742 
       0.201739 
       1.309440 
       0.002075 
       4.31796 
       0.990398 
       0.258623 
       0.951077 
       0.005567 
       2.85468 
       0.996982 
       0.172486 
       1.535450 
       0.002232 
       3.687190 
     
    
      130 
       0.998910 
       0.191200 
       1.386850 
       0.001931 
       4.42140 
       0.992188 
       0.208113 
       1.264560 
       0.005023 
       3.00289 
       0.997426 
       0.154138 
       1.697710 
       0.002061 
       3.801830 
     
    
      140 
       0.999043 
       0.179265 
       1.479830 
       0.001810 
       4.51480 
       0.993591 
       0.202066 
       1.307100 
       0.004551 
       3.14519 
       0.997753 
       0.150105 
       1.735960 
       0.001926 
       3.899840 
     
    
      150 
       0.999151 
       0.172699 
       1.533670 
       0.001705 
       4.60150 
       0.994595 
       0.192531 
       1.376840 
       0.004181 
       3.26774 
       0.998005 
       0.129837 
       1.945220 
       0.001815 
       3.985360 
     
    
      160 
       0.999232 
       0.164834 
       1.600910 
       0.001622 
       4.67314 
       0.995574 
       0.174653 
       1.517440 
       0.003784 
       3.41146 
       0.998251 
       0.118750 
       2.074000 
       0.001700 
       4.080190 
     
    
      170 
       0.999312 
       0.152390 
       1.714160 
       0.001535 
       4.75262 
       0.996306 
       0.162890 
       1.618030 
       0.003458 
       3.54167 
       0.998439 
       0.105631 
       2.242890 
       0.001606 
       4.162170 
     
    
      180 
       0.999376 
       0.149995 
       1.737020 
       0.001462 
       4.82340 
       0.996901 
       0.138058 
       1.856660 
       0.003167 
       3.66821 
       0.998599 
       0.096334 
       2.375810 
       0.001521 
       4.240100 
     
    
      190 
       0.999432 
       0.137113 
       1.866560 
       0.001394 
       4.89147 
       0.997501 
       0.133189 
       1.908450 
       0.002845 
       3.82300 
       0.998737 
       0.091018 
       2.457700 
       0.001445 
       4.314710 
     
    
      200 
       0.999489 
       0.130206 
       1.941130 
       0.001322 
       4.96784 
       0.997828 
       0.131054 
       1.931760 
       0.002652 
       3.92428 
       0.998885 
       0.084151 
       2.570880 
       0.001357 
       4.404870 
     
    
      10 
      10  
       0.975266 
       0.656360 
      -0.392559 
       0.009147 
       2.17766 
       0.934351 
       0.809331 
      -0.694803 
       0.014349 
       1.48861 
       0.888527 
       0.636792 
      -0.348894 
       0.013191 
       1.123980 
     
    
      20  
       0.987531 
       0.450154 
       0.151508 
       0.006515 
       2.66725 
       0.950615 
       0.683761 
      -0.451565 
       0.012498 
       1.68793 
       0.936494 
       0.486705 
       0.038882 
       0.010082 
       1.511760 
     
    
      30  
       0.992846 
       0.331755 
       0.591809 
       0.004942 
       3.06606 
       0.956897 
       0.626803 
      -0.326083 
       0.011695 
       1.78374 
       0.957920 
       0.441695 
       0.178879 
       0.008252 
       1.800690 
     
    
      40  
       0.995034 
       0.328510 
       0.605993 
       0.004119 
       3.32862 
       0.962673 
       0.604202 
      -0.273102 
       0.010899 
       1.88541 
       0.978414 
       0.351872 
       0.506876 
       0.005941 
       2.274710 
     
    
      50  
       0.996231 
       0.312111 
       0.679869 
       0.003590 
       3.52714 
       0.966214 
       0.531391 
      -0.087846 
       0.010378 
       1.95600 
       0.986403 
       0.324261 
       0.624772 
       0.004725 
       2.605180 
     
    
      60  
       0.997088 
       0.225824 
       1.146730 
       0.003156 
       3.71297 
       0.971063 
       0.493956 
       0.017545 
       0.009617 
       2.06598 
       0.990641 
       0.197598 
       1.339360 
       0.003924 
       2.873100 
     
    
      70  
       0.997613 
       0.212422 
       1.235000 
       0.002858 
       3.85615 
       0.976182 
       0.460543 
       0.118591 
       0.008736 
       2.20453 
       0.992708 
       0.179101 
       1.481150 
       0.003465 
       3.052410 
     
    
      80  
       0.998039 
       0.193055 
       1.372920 
       0.002591 
       3.99764 
       0.981019 
       0.431799 
       0.211568 
       0.007808 
       2.36653 
       0.994246 
       0.170009 
       1.556320 
       0.003080 
       3.222660 
     
    
      90  
       0.998317 
       0.165206 
       1.597660 
       0.002400 
       4.10818 
       0.984843 
       0.433422 
       0.206156 
       0.006984 
       2.52741 
       0.995506 
       0.151083 
       1.726580 
       0.002723 
       3.400510 
     
    
      100 
       0.998574 
       0.157242 
       1.668940 
       0.002210 
       4.22719 
       0.989046 
       0.407289 
       0.295876 
       0.005944 
       2.76014 
       0.996304 
       0.136256 
       1.875610 
       0.002469 
       3.541280 
     
    
      110 
       0.998762 
       0.151223 
       1.725250 
       0.002058 
       4.32957 
       0.991780 
       0.354304 
       0.496941 
       0.005152 
       2.96625 
       0.996789 
       0.130101 
       1.942300 
       0.002302 
       3.642480 
     
    
      120 
       0.998908 
       0.139937 
       1.837150 
       0.001933 
       4.41989 
       0.993248 
       0.287216 
       0.799792 
       0.004671 
       3.10768 
       0.997275 
       0.117338 
       2.091260 
       0.002121 
       3.760730 
     
    
      130 
       0.999023 
       0.133830 
       1.901530 
       0.001829 
       4.49977 
       0.994443 
       0.255457 
       0.968850 
       0.004239 
       3.24770 
       0.997625 
       0.107586 
       2.216440 
       0.001980 
       3.859720 
     
    
      140 
       0.999141 
       0.126625 
       1.981370 
       0.001715 
       4.59246 
       0.995369 
       0.224625 
       1.154410 
       0.003871 
       3.37894 
       0.997948 
       0.087988 
       2.506540 
       0.001841 
       3.965120 
     
    
      150 
       0.999239 
       0.117768 
       2.085980 
       0.001614 
       4.68056 
       0.996077 
       0.205802 
       1.280670 
       0.003563 
       3.49840 
       0.998235 
       0.071001 
       2.816020 
       0.001707 
       4.073580 
     
    
      160 
       0.999323 
       0.110741 
       2.174740 
       0.001522 
       4.76488 
       0.996824 
       0.194294 
       1.363690 
       0.003207 
       3.65036 
       0.998482 
       0.066228 
       2.916420 
       0.001584 
       4.182120 
     
    
      170 
       0.999396 
       0.107175 
       2.221960 
       0.001438 
       4.84703 
       0.997409 
       0.172039 
       1.539200 
       0.002897 
       3.79717 
       0.998656 
       0.064385 
       2.957130 
       0.001490 
       4.270160 
     
    
      180 
       0.999467 
       0.100571 
       2.313720 
       0.001352 
       4.93646 
       0.997909 
       0.142146 
       1.814560 
       0.002602 
       3.95164 
       0.998834 
       0.061054 
       3.033760 
       0.001388 
       4.372540 
     
    
      190 
       0.999523 
       0.091884 
       2.444040 
       0.001279 
       5.01650 
       0.998248 
       0.139551 
       1.841140 
       0.002383 
       4.07898 
       0.998981 
       0.057560 
       3.118790 
       0.001297 
       4.469850 
     
    
      200 
       0.999569 
       0.084831 
       2.559260 
       0.001215 
       5.09065 
       0.998566 
       0.137734 
       1.860040 
       0.002156 
       4.22326 
       0.999096 
       0.055853 
       3.162220 
       0.001222 
       4.555950 
     
  
200 rows × 15 columns
In [31]:
    
# fewer scenarios (K=10 only)
v.loc(axis=0)[10,:].mean(axis=0).unstack()[statistics_of_interest].sort("max_error").tail(60).join(vi)
    
    Out[31]:
  
    
       
      rms_error 
      max_error 
      precisionbits 
      srr 
      correlation 
      levels 
      name 
     
    
      VARIABLE 
       
       
       
       
       
       
       
     
  
  
    
      DTV 
       0.002307 
       0.150761 
       2.312318 
       3.777210 
       0.993982 
       30 
                                    T vertical diffusion 
     
    
      AREI 
       0.005116 
       0.150780 
       2.295831 
       4.860082 
       0.998484 
       30 
                            Average ice effective radius 
     
    
      IWC 
       0.003250 
       0.151053 
       2.127201 
       4.416385 
       0.996918 
       30 
                      Grid box average ice water content 
     
    
      PRECL 
       0.004623 
       0.151348 
       2.053304 
       3.470388 
       0.990067 
        1 
       Large-scale (stable) precipitation rate (liq +... 
     
    
      ABSORB 
       0.001092 
       0.152000 
       2.139774 
       3.718342 
       0.989966 
       30 
                                      Aerosol absorption 
     
    
      WGUSTD 
       0.009387 
       0.159573 
       1.925118 
       3.728114 
       0.989039 
        1 
                              wind gusts from turbulence 
     
    
      FREQS 
       0.005249 
       0.159683 
       1.967627 
       5.261795 
       0.999213 
       30 
                            Fractional occurance of snow 
     
    
      TAUX 
       0.008240 
       0.159833 
       1.989205 
       3.969613 
       0.994015 
        1 
                                    Zonal surface stress 
     
    
      VFLX 
       0.001319 
       0.160396 
       2.087766 
       2.340672 
       0.957608 
       31 
                                 Meridional momentm flux 
     
    
      CMFMCDZM 
       0.003645 
       0.161406 
       1.775917 
       4.605288 
       0.997919 
       31 
                       Convection mass flux from ZM deep 
     
    
      so4_a3 
       0.003247 
       0.161805 
       2.031945 
       4.184827 
       0.992704 
       30 
                                    so4_a3 concentration 
     
    
      SSTSFMBL 
       0.009603 
       0.162602 
       1.930210 
       4.790970 
       0.998109 
        1 
                            Mobilization flux at surface 
     
    
      SNOWHICE 
       0.009109 
       0.162854 
       2.919806 
       5.138699 
       0.991865 
        1 
                             Water equivalent snow depth 
     
    
      AWNC 
       0.004605 
       0.163289 
       1.911400 
       3.748893 
       0.992979 
       30 
                         Average cloud water number conc 
     
    
      bc_a1 
       0.002457 
       0.164768 
       2.133224 
       3.576152 
       0.988670 
       30 
                                     bc_a1 concentration 
     
    
      CMFDT 
       0.003099 
       0.165926 
       1.906378 
       4.703353 
       0.997948 
       30 
                         T tendency - shallow convection 
     
    
      LANDFRAC 
       0.008297 
       0.166796 
       2.678521 
       7.021870 
       0.999360 
        1 
                    Fraction of sfc area covered by land 
     
    
      OCNFRAC 
       0.008611 
       0.167786 
       2.671528 
       7.049564 
       0.999306 
        1 
                   Fraction of sfc area covered by ocean 
     
    
      AQRAIN 
       0.002229 
       0.168214 
       1.927235 
       3.469130 
       0.991019 
       30 
                               Average rain mixing ratio 
     
    
      UFLX 
       0.000897 
       0.170230 
       2.142051 
       2.644936 
       0.970718 
       31 
                                     Zonal momentum flux 
     
    
      ICLDIWP 
       0.002988 
       0.171661 
       1.949385 
       4.001875 
       0.994231 
       30 
                                 In-cloud ice water path 
     
    
      ICWMR 
       0.003727 
       0.174587 
       1.688543 
       4.755901 
       0.998301 
       30 
                  Prognostic in-cloud water mixing ratio 
     
    
      TKE 
       0.002680 
       0.179692 
       2.130382 
       4.504809 
       0.997176 
       31 
                                Turbulent Kinetic Energy 
     
    
      TAUTMSX 
       0.007790 
       0.183793 
       1.994213 
       2.856892 
       0.957881 
        1 
                 Zonal turbulent mountain surface stress 
     
    
      wat_a1 
       0.003682 
       0.184100 
       1.894613 
       4.781895 
       0.998221 
       30 
                    aerosol water, interstitial, mode 01 
     
    
      KVH 
       0.003475 
       0.185180 
       1.922911 
       3.994893 
       0.995400 
       31 
        Vertical diffusion diffusivities (heat/moisture) 
     
    
      CLDLIQ 
       0.003772 
       0.186238 
       1.902282 
       3.883411 
       0.994689 
       30 
                   Grid box averaged cloud liquid amount 
     
    
      VD01 
       0.002724 
       0.189762 
       1.989764 
       4.075565 
       0.995490 
       30 
                                 Vertical diffusion of Q 
     
    
      QTFLX 
       0.003661 
       0.190431 
       2.182217 
       5.542273 
       0.999126 
       31 
                                        Total water flux 
     
    
      KVM 
       0.003637 
       0.190924 
       1.801932 
       3.935414 
       0.995265 
       31 
             Vertical diffusion diffusivities (momentum) 
     
    
      soa_a2 
       0.003739 
       0.194723 
       1.787021 
       3.327927 
       0.984954 
       30 
                                    soa_a2 concentration 
     
    
      LCLOUD 
       0.005653 
       0.195806 
       1.811231 
       4.820936 
       0.998143 
       30 
                                   Liquid cloud fraction 
     
    
      PRECSL 
       0.008072 
       0.195993 
       1.623321 
       4.113386 
       0.994463 
        1 
       Large-scale (stable) snow rate (water equivalent) 
     
    
      FICE 
       0.007421 
       0.197044 
       1.609409 
       5.828861 
       0.999287 
       30 
                     Fractional ice content within cloud 
     
    
      PRECSH 
       0.006537 
       0.200311 
       1.681084 
       3.690425 
       0.992156 
        1 
                   Shallow Convection precipitation rate 
     
    
      num_a1 
       0.002130 
       0.203107 
       1.824452 
       3.414676 
       0.987545 
       30 
                                    num_a1 concentration 
     
    
      ICIMR 
       0.003666 
       0.203327 
       1.586450 
       4.012357 
       0.994773 
       30 
                    Prognostic in-cloud ice mixing ratio 
     
    
      AODMODE2 
       0.006635 
       0.206758 
       1.836645 
       3.055206 
       0.974747 
        1 
                     Aerosol optical depth 550 nm mode 2 
     
    
      AQSNOW 
       0.002395 
       0.207676 
       1.689907 
       3.789387 
       0.994127 
       30 
                               Average snow mixing ratio 
     
    
      CMFDQR 
       0.002874 
       0.209861 
       1.495143 
       4.092331 
       0.996444 
       30 
                 Q tendency - shallow convection rainout 
     
    
      NUMLIQ 
       0.004362 
       0.225002 
       1.485313 
       3.372489 
       0.989077 
       30 
                   Grid box averaged cloud liquid number 
     
    
      AREL 
       0.004691 
       0.225738 
       1.407114 
       4.920433 
       0.998450 
       30 
                        Average droplet effective radius 
     
    
      pom_a1 
       0.002310 
       0.227821 
       1.581035 
       3.353629 
       0.984126 
       30 
                                    pom_a1 concentration 
     
    
      QC 
       0.003460 
       0.236336 
       1.287794 
       4.520361 
       0.997582 
       30 
               Q tendency - shallow convection LW export 
     
    
      wat_a2 
       0.002197 
       0.256026 
       1.405818 
       3.147286 
       0.983557 
       30 
                    aerosol water, interstitial, mode 02 
     
    
      PRECSC 
       0.008153 
       0.257288 
       1.140838 
       3.252799 
       0.984395 
        1 
                 Convective snow rate (water equivalent) 
     
    
      ANSNOW 
       0.003332 
       0.257889 
       1.360512 
       2.492806 
       0.978072 
       30 
                                Average snow number conc 
     
    
      DMS 
       0.002985 
       0.264619 
       1.119987 
       4.697205 
       0.997218 
       30 
                                       DMS concentration 
     
    
      num_a2 
       0.003229 
       0.277273 
       1.313120 
       3.042506 
       0.978477 
       30 
                                    num_a2 concentration 
     
    
      SNOWHLND 
       0.009510 
       0.326186 
       1.105382 
       5.449907 
       0.994402 
        1 
                             Water equivalent snow depth 
     
    
      BURDEN2 
       0.007675 
       0.329139 
       1.421354 
       3.239291 
       0.971717 
        1 
                                   Aerosol burden mode 2 
     
    
      TOT_ICLD_VISTAU 
       0.006682 
       0.379783 
       0.606781 
       2.831333 
       0.981639 
       30 
       Total in-cloud extinction visible sw optical d... 
     
    
      ANRAIN 
       0.005135 
       0.406939 
       0.512524 
       3.407987 
       0.992012 
       30 
                                Average rain number conc 
     
    
      LND_MBL 
       0.011713 
       0.427956 
       0.977802 
       2.695587 
       0.845516 
        1 
                                 Soil erodibility factor 
     
    
      SO2 
       0.003376 
       0.455712 
       0.674063 
       3.174208 
       0.980712 
       30 
                                       SO2 concentration 
     
    
      so4_a2 
       0.002666 
       0.470166 
       0.716732 
       2.563449 
       0.957498 
       30 
                                    so4_a2 concentration 
     
    
      dst_a1SF 
       0.004019 
       0.495278 
       0.244394 
       1.143793 
       0.790318 
        1 
                            dst_a1 dust surface emission 
     
    
      DSTSFMBL 
       0.004019 
       0.495278 
       0.244394 
       1.143793 
       0.790318 
        1 
                            Mobilization flux at surface 
     
    
      dst_a3SF 
       0.004019 
       0.495278 
       0.244394 
       1.143793 
       0.790318 
        1 
                            dst_a3 dust surface emission 
     
    
      H2SO4 
       0.004325 
       0.564690 
      -0.029436 
       2.891796 
       0.978089 
       30 
                                     H2SO4 concentration 
     
  
In [32]:
    
v.mean(axis=1,level="STATISTIC")[statistics_of_interest].sort("rms_error").head(20).join(o.loc[:,"compression_ratio"])
    
    Out[32]:
  
    
       
       
      rms_error 
      max_error 
      precisionbits 
      srr 
      correlation 
      compression_ratio 
     
    
      K 
      M 
       
       
       
       
       
       
     
  
  
    
      10 
      200 
       0.001179 
       0.036685 
       4.171292 
       6.217852 
       0.999405 
       0.706582 
     
    
      190 
       0.001264 
       0.039919 
       4.069947 
       6.119300 
       0.999217 
       0.671280 
     
    
      8  
      200 
       0.001315 
       0.042373 
       3.899866 
       6.057898 
       0.999315 
       0.565332 
     
    
      9  
      200 
       0.001334 
       0.042846 
       3.970926 
       6.043406 
       0.999467 
       0.635957 
     
    
      10 
      180 
       0.001354 
       0.043330 
       3.963846 
       6.020019 
       0.999090 
       0.635978 
     
    
      7  
      200 
       0.001389 
       0.043791 
       3.849059 
       5.979769 
       0.999246 
       0.494707 
     
    
      8  
      190 
       0.001410 
       0.045703 
       3.794118 
       5.958123 
       0.999195 
       0.537091 
     
    
      9  
      190 
       0.001429 
       0.046101 
       3.860802 
       5.946728 
       0.999413 
       0.604185 
     
    
      10 
      170 
       0.001458 
       0.047120 
       3.856658 
       5.915552 
       0.998937 
       0.600676 
     
    
      7  
      190 
       0.001485 
       0.047639 
       3.743508 
       5.884144 
       0.999109 
       0.469996 
     
    
      8  
      180 
       0.001516 
       0.050718 
       3.671740 
       5.858091 
       0.998975 
       0.508849 
     
    
      9  
      180 
       0.001525 
       0.049159 
       3.756998 
       5.854614 
       0.999349 
       0.572413 
     
    
      10 
      160 
       0.001572 
       0.051557 
       3.740192 
       5.806754 
       0.998754 
       0.565374 
     
    
      7  
      180 
       0.001595 
       0.052499 
       3.614048 
       5.781628 
       0.998938 
       0.445284 
     
    
      6  
      200 
       0.001599 
       0.052599 
       3.722570 
       5.787851 
       0.998655 
       0.424082 
     
    
      9  
      170 
       0.001635 
       0.052899 
       3.638873 
       5.755664 
       0.999277 
       0.540641 
     
    
      8  
      170 
       0.001635 
       0.055154 
       3.557428 
       5.751932 
       0.998804 
       0.480607 
     
    
      5  
      200 
       0.001681 
       0.054493 
       3.670439 
       5.713097 
       0.998802 
       0.353457 
     
    
      10 
      150 
       0.001707 
       0.056384 
       3.599720 
       5.689856 
       0.998629 
       0.530071 
     
    
      6  
      190 
       0.001713 
       0.056721 
       3.610284 
       5.689755 
       0.998554 
       0.402901 
     
  
In [33]:
    
v.mean(axis=1,level="STATISTIC")[statistics_of_interest].sort("max_error").head(20).join(o.loc[:,"compression_ratio"])
    
    Out[33]:
  
    
       
       
      rms_error 
      max_error 
      precisionbits 
      srr 
      correlation 
      compression_ratio 
     
    
      K 
      M 
       
       
       
       
       
       
     
  
  
    
      10 
      200 
       0.001179 
       0.036685 
       4.171292 
       6.217852 
       0.999405 
       0.706582 
     
    
      190 
       0.001264 
       0.039919 
       4.069947 
       6.119300 
       0.999217 
       0.671280 
     
    
      8  
      200 
       0.001315 
       0.042373 
       3.899866 
       6.057898 
       0.999315 
       0.565332 
     
    
      9  
      200 
       0.001334 
       0.042846 
       3.970926 
       6.043406 
       0.999467 
       0.635957 
     
    
      10 
      180 
       0.001354 
       0.043330 
       3.963846 
       6.020019 
       0.999090 
       0.635978 
     
    
      7  
      200 
       0.001389 
       0.043791 
       3.849059 
       5.979769 
       0.999246 
       0.494707 
     
    
      8  
      190 
       0.001410 
       0.045703 
       3.794118 
       5.958123 
       0.999195 
       0.537091 
     
    
      9  
      190 
       0.001429 
       0.046101 
       3.860802 
       5.946728 
       0.999413 
       0.604185 
     
    
      10 
      170 
       0.001458 
       0.047120 
       3.856658 
       5.915552 
       0.998937 
       0.600676 
     
    
      7  
      190 
       0.001485 
       0.047639 
       3.743508 
       5.884144 
       0.999109 
       0.469996 
     
    
      9  
      180 
       0.001525 
       0.049159 
       3.756998 
       5.854614 
       0.999349 
       0.572413 
     
    
      8  
      180 
       0.001516 
       0.050718 
       3.671740 
       5.858091 
       0.998975 
       0.508849 
     
    
      10 
      160 
       0.001572 
       0.051557 
       3.740192 
       5.806754 
       0.998754 
       0.565374 
     
    
      7  
      180 
       0.001595 
       0.052499 
       3.614048 
       5.781628 
       0.998938 
       0.445284 
     
    
      6  
      200 
       0.001599 
       0.052599 
       3.722570 
       5.787851 
       0.998655 
       0.424082 
     
    
      9  
      170 
       0.001635 
       0.052899 
       3.638873 
       5.755664 
       0.999277 
       0.540641 
     
    
      5  
      200 
       0.001681 
       0.054493 
       3.670439 
       5.713097 
       0.998802 
       0.353457 
     
    
      8  
      170 
       0.001635 
       0.055154 
       3.557428 
       5.751932 
       0.998804 
       0.480607 
     
    
      10 
      150 
       0.001707 
       0.056384 
       3.599720 
       5.689856 
       0.998629 
       0.530071 
     
    
      6  
      190 
       0.001713 
       0.056721 
       3.610284 
       5.689755 
       0.998554 
       0.402901 
     
  
In [34]:
    
v.mean(axis=1,level="STATISTIC")[statistics_of_interest].sort("rms_error", ascending=False).head(20).join(o.loc[:,"compression_ratio"])
    
    Out[34]:
  
    
       
       
      rms_error 
      max_error 
      precisionbits 
      srr 
      correlation 
      compression_ratio 
     
    
      K 
      M 
       
       
       
       
       
       
     
  
  
    
      1  
      10 
       0.032613 
       0.558757 
       0.026621 
       1.554078 
       0.873119 
       0.003883 
     
    
      2  
      10 
       0.029116 
       0.541185 
       0.091786 
       1.711856 
       0.890421 
       0.007434 
     
    
      3  
      10 
       0.026023 
       0.520275 
       0.141566 
       1.857496 
       0.909598 
       0.010985 
     
    
      4  
      10 
       0.024421 
       0.487644 
       0.225357 
       1.945359 
       0.919464 
       0.014536 
     
    
      5  
      10 
       0.023227 
       0.484181 
       0.247338 
       2.015131 
       0.924582 
       0.018086 
     
    
      6  
      10 
       0.022947 
       0.476629 
       0.261784 
       2.034291 
       0.926251 
       0.021637 
     
    
      1  
      20 
       0.022761 
       0.477184 
       0.322678 
       2.035921 
       0.919614 
       0.007413 
     
    
      7  
      10 
       0.020720 
       0.447893 
       0.399521 
       2.175731 
       0.936636 
       0.025188 
     
    
      8  
      10 
       0.019766 
       0.444562 
       0.392137 
       2.239239 
       0.938765 
       0.028739 
     
    
      2  
      20 
       0.019743 
       0.442116 
       0.427316 
       2.228669 
       0.932706 
       0.014494 
     
    
      9  
      10 
       0.019230 
       0.440454 
       0.421433 
       2.280314 
       0.940855 
       0.032290 
     
    
      10 
      10 
       0.018575 
       0.423196 
       0.474407 
       2.327416 
       0.944117 
       0.035840 
     
    
      1  
      30 
       0.017676 
       0.421664 
       0.547743 
       2.384021 
       0.937093 
       0.010944 
     
    
      3  
      20 
       0.017391 
       0.426849 
       0.480582 
       2.400904 
       0.943077 
       0.021576 
     
    
      4  
      20 
       0.016387 
       0.400637 
       0.583792 
       2.499455 
       0.949668 
       0.028657 
     
    
      5  
      20 
       0.015510 
       0.382905 
       0.652881 
       2.571205 
       0.953374 
       0.035737 
     
    
      2  
      30 
       0.015137 
       0.383848 
       0.677909 
       2.599401 
       0.949513 
       0.021555 
     
    
      6  
      20 
       0.014901 
       0.363810 
       0.732395 
       2.635758 
       0.957521 
       0.042819 
     
    
      1  
      40 
       0.014652 
       0.380159 
       0.719347 
       2.642628 
       0.950439 
       0.014474 
     
    
      7  
      20 
       0.013745 
       0.353876 
       0.805793 
       2.757408 
       0.962853 
       0.049900 
     
  
In [35]:
    
v.mean(axis=1,level="STATISTIC")[statistics_of_interest].sort("max_error", ascending=False).head(20).join(o.loc[:,"compression_ratio"])
    
    Out[35]:
  
    
       
       
      rms_error 
      max_error 
      precisionbits 
      srr 
      correlation 
      compression_ratio 
     
    
      K 
      M 
       
       
       
       
       
       
     
  
  
    
      1  
      10 
       0.032613 
       0.558757 
       0.026621 
       1.554078 
       0.873119 
       0.003883 
     
    
      2  
      10 
       0.029116 
       0.541185 
       0.091786 
       1.711856 
       0.890421 
       0.007434 
     
    
      3  
      10 
       0.026023 
       0.520275 
       0.141566 
       1.857496 
       0.909598 
       0.010985 
     
    
      4  
      10 
       0.024421 
       0.487644 
       0.225357 
       1.945359 
       0.919464 
       0.014536 
     
    
      5  
      10 
       0.023227 
       0.484181 
       0.247338 
       2.015131 
       0.924582 
       0.018086 
     
    
      1  
      20 
       0.022761 
       0.477184 
       0.322678 
       2.035921 
       0.919614 
       0.007413 
     
    
      6  
      10 
       0.022947 
       0.476629 
       0.261784 
       2.034291 
       0.926251 
       0.021637 
     
    
      7  
      10 
       0.020720 
       0.447893 
       0.399521 
       2.175731 
       0.936636 
       0.025188 
     
    
      8  
      10 
       0.019766 
       0.444562 
       0.392137 
       2.239239 
       0.938765 
       0.028739 
     
    
      2  
      20 
       0.019743 
       0.442116 
       0.427316 
       2.228669 
       0.932706 
       0.014494 
     
    
      9  
      10 
       0.019230 
       0.440454 
       0.421433 
       2.280314 
       0.940855 
       0.032290 
     
    
      3  
      20 
       0.017391 
       0.426849 
       0.480582 
       2.400904 
       0.943077 
       0.021576 
     
    
      10 
      10 
       0.018575 
       0.423196 
       0.474407 
       2.327416 
       0.944117 
       0.035840 
     
    
      1  
      30 
       0.017676 
       0.421664 
       0.547743 
       2.384021 
       0.937093 
       0.010944 
     
    
      4  
      20 
       0.016387 
       0.400637 
       0.583792 
       2.499455 
       0.949668 
       0.028657 
     
    
      2  
      30 
       0.015137 
       0.383848 
       0.677909 
       2.599401 
       0.949513 
       0.021555 
     
    
      5  
      20 
       0.015510 
       0.382905 
       0.652881 
       2.571205 
       0.953374 
       0.035737 
     
    
      1  
      40 
       0.014652 
       0.380159 
       0.719347 
       2.642628 
       0.950439 
       0.014474 
     
    
      3  
      30 
       0.013379 
       0.366781 
       0.735514 
       2.767690 
       0.958665 
       0.032166 
     
    
      6  
      20 
       0.014901 
       0.363810 
       0.732395 
       2.635758 
       0.957521 
       0.042819 
     
  
In [70]:
    
# error vs compression ratio, one line per K
grouped_data = v.loc(axis=0)[5:10,:].mean(axis=1,level="STATISTIC")[statistics_of_interest].join(o.loc[:,"compression_ratio_fixed"]).reset_index().groupby("K")
for key,grp in grouped_data:
    plt.plot(grp["compression_ratio_fixed"],grp["rms_error"],label="K = " + str(key))
plt.legend()
plt.xlabel("compression ratio")
plt.ylabel("mean rms error")
plt.title("error vs compression ratio, by K")
plt.xlim((0.08,0.11))
plt.ylim((0.001,0.002))
    
    Out[70]:
(0.001, 0.002)
    
 
In [68]:
    
# compression ratio vs time per solve, one line per K
grouped_data = o.loc(axis=0)[7:10,:].reset_index().groupby("K")
for key,grp in grouped_data:
    plt.plot(grp["compression_ratio_fixed"],grp["time_solve"],label="K = " + str(key))
plt.legend(loc=2)
plt.xlabel("compression ratio")
plt.ylabel("time to solve")
plt.title("error vs compression ratio, by K")
#plt.xlim((0.10,0.14))
#plt.ylim((0.0008,0.0012))
    
    Out[68]:
<matplotlib.text.Text at 0x7f53ddefcf98>
    
 
In [37]:
    
# error vs compression ratio, one line per M
grouped_data = v.loc(axis=0)[:,:].mean(axis=1,level="STATISTIC")[statistics_of_interest].join(o.loc[:,"compression_ratio_fixed"]).reset_index().groupby("M")
for key,grp in grouped_data:
    plt.plot(grp["compression_ratio_fixed"],grp["rms_error"],label="M = " + str(key))
    #print(grp)
#plt.legend()
plt.xlabel("compression ratio")
plt.ylabel("mean rms error")
plt.title("error vs compression ratio, by M")
    
    Out[37]:
<matplotlib.text.Text at 0x7f53de96f320>
    
 
In [38]:
    
# 3D variables only
variables_3D = list(vi[vi.levels == 30].index)
grouped_3D = v.loc[:,variables_3D].mean(axis=1,level="STATISTIC")[statistics_of_interest].join(o.loc[:,"compression_ratio_fixed"]).reset_index().groupby("K")
for key,grp in grouped_3D:
    plt.plot(grp["compression_ratio_fixed"],grp["rms_error"],label="K = " + str(key))
plt.legend()
    
    Out[38]:
<matplotlib.legend.Legend at 0x7f53de96bda0>
    
 
In [39]:
    
grouped_single = v.loc[:,"VT"][statistics_of_interest].join(o.loc[:,"compression_ratio_fixed"]).reset_index().groupby("K")
for key,grp in grouped_single:
    plt.plot(grp["compression_ratio_fixed"],grp["rms_error"],label="K = " + str(key))
plt.legend()
    
    Out[39]:
<matplotlib.legend.Legend at 0x7f53dea72f28>
    
 
In [40]:
    
t = v.loc(axis=0)[8,200].unstack().sort("max_error", ascending=False).join(vi)["levels"].reset_index().reset_index()
t[t.levels < 10].hist("index")
    
    Out[40]:
array([[<matplotlib.axes.AxesSubplot object at 0x7f53de9d6c18>]], dtype=object)
    
 
In [41]:
    
t[t.levels>=30].hist("index")
    
    Out[41]:
array([[<matplotlib.axes.AxesSubplot object at 0x7f53de7177f0>]], dtype=object)
    
 
In [42]:
    
#o.reset_index().plot(x="M", y="time_solve")
# 3D variables only
grouped_time = o.reset_index().groupby("K")
for key,grp in grouped_time:
    plt.plot(grp["M"],grp["time_solve"],label="K = " + str(key))
plt.legend(loc=2)
    
    Out[42]:
<matplotlib.legend.Legend at 0x7f53de690a20>
    
 
In [52]:
    
v.loc(axis=1)[["U","FSDSC","Z3","CCN3"],"rms_error"].join(o["compression_ratio_fixed"]).loc(axis=0)[8,:]
v.loc(axis=1)[["U","FSDSC","Z3","CCN3"],"correlation"].join(o["compression_ratio_fixed"]).loc(axis=0)[8,:]
    
    Out[52]:
  
    
       
       
      (CCN3, correlation) 
      (FSDSC, correlation) 
      (U, correlation) 
      (Z3, correlation) 
      compression_ratio_fixed 
     
    
      K 
      M 
       
       
       
       
       
     
  
  
    
      8 
      10  
       0.973654 
       0.991845 
       0.986003 
       0.999938 
       0.005468 
     
    
      20  
       0.989047 
       0.997210 
       0.995316 
       0.999985 
       0.010438 
     
    
      30  
       0.994398 
       0.998522 
       0.998008 
       0.999994 
       0.015409 
     
    
      40  
       0.996443 
       0.999339 
       0.998933 
       0.999996 
       0.020379 
     
    
      50  
       0.997627 
       0.999555 
       0.999318 
       0.999998 
       0.025350 
     
    
      60  
       0.998179 
       0.999720 
       0.999524 
       0.999998 
       0.030320 
     
    
      70  
       0.998578 
       0.999826 
       0.999651 
       0.999999 
       0.035290 
     
    
      80  
       0.998885 
       0.999866 
       0.999736 
       0.999999 
       0.040261 
     
    
      90  
       0.999091 
       0.999900 
       0.999788 
       0.999999 
       0.045231 
     
    
      100 
       0.999230 
       0.999924 
       0.999831 
       1.000000 
       0.050202 
     
    
      110 
       0.999335 
       0.999935 
       0.999859 
       1.000000 
       0.055172 
     
    
      120 
       0.999443 
       0.999951 
       0.999883 
       1.000000 
       0.060143 
     
    
      130 
       0.999514 
       0.999963 
       0.999905 
       1.000000 
       0.065113 
     
    
      140 
       0.999594 
       0.999971 
       0.999920 
       1.000000 
       0.070084 
     
    
      150 
       0.999642 
       0.999975 
       0.999932 
       1.000000 
       0.075054 
     
    
      160 
       0.999683 
       0.999980 
       0.999941 
       1.000000 
       0.080025 
     
    
      170 
       0.999718 
       0.999983 
       0.999949 
       1.000000 
       0.084995 
     
    
      180 
       0.999754 
       0.999986 
       0.999955 
       1.000000 
       0.089966 
     
    
      190 
       0.999781 
       0.999987 
       0.999961 
       1.000000 
       0.094936 
     
    
      200 
       0.999805 
       0.999989 
       0.999965 
       1.000000 
       0.099907 
     
  
In [51]:
    
v.loc(axis=1)[["U","FSDSC","Z3","CCN3"],"max_error"].join(o["compression_ratio_fixed"]).loc(axis=0)[8,:]
    
    Out[51]:
  
    
       
       
      (CCN3, max_error) 
      (FSDSC, max_error) 
      (U, max_error) 
      (Z3, max_error) 
      compression_ratio_fixed 
     
    
      K 
      M 
       
       
       
       
       
     
  
  
    
      8 
      10  
       0.549114 
       0.300649 
       0.326978 
       0.060395 
       0.005468 
     
    
      20  
       0.435776 
       0.111562 
       0.195177 
       0.025157 
       0.010438 
     
    
      30  
       0.250617 
       0.102046 
       0.132702 
       0.021455 
       0.015409 
     
    
      40  
       0.222734 
       0.095497 
       0.137346 
       0.018558 
       0.020379 
     
    
      50  
       0.158119 
       0.073507 
       0.110762 
       0.017540 
       0.025350 
     
    
      60  
       0.147850 
       0.061602 
       0.085000 
       0.016874 
       0.030320 
     
    
      70  
       0.136870 
       0.055606 
       0.066489 
       0.014166 
       0.035290 
     
    
      80  
       0.098520 
       0.059387 
       0.061466 
       0.013852 
       0.040261 
     
    
      90  
       0.090614 
       0.062971 
       0.038670 
       0.011644 
       0.045231 
     
    
      100 
       0.085407 
       0.061753 
       0.038410 
       0.011237 
       0.050202 
     
    
      110 
       0.072485 
       0.057276 
       0.037132 
       0.009493 
       0.055172 
     
    
      120 
       0.070625 
       0.058673 
       0.032301 
       0.007653 
       0.060143 
     
    
      130 
       0.067034 
       0.056381 
       0.029827 
       0.006939 
       0.065113 
     
    
      140 
       0.065346 
       0.057903 
       0.026102 
       0.006592 
       0.070084 
     
    
      150 
       0.063502 
       0.055686 
       0.023904 
       0.005716 
       0.075054 
     
    
      160 
       0.056206 
       0.052997 
       0.022932 
       0.004736 
       0.080025 
     
    
      170 
       0.053030 
       0.051606 
       0.022263 
       0.003796 
       0.084995 
     
    
      180 
       0.049188 
       0.046691 
       0.021437 
       0.003730 
       0.089966 
     
    
      190 
       0.045225 
       0.040633 
       0.018439 
       0.003705 
       0.094936 
     
    
      200 
       0.045484 
       0.038110 
       0.018905 
       0.003679 
       0.099907 
     
  
Content source: eth-cscs/compression
Similar notebooks: