Analysis of Compression Results


In [3]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
pd.__version__ # need 0.14.0 for multiindex slicing


Out[3]:
'0.14.1'

Read files with statistics & reorganize in indexed data frames


In [4]:
o_raw = pd.read_table("overall_statistics_ksmall.txt")
v_raw = pd.read_table("variable_statistics_ksmall.txt")
# ncol: 48602, lev: 30 (88x), ilev: 31 (9x), 2D: 101x
#N_c = 48602 # for all variables, horizontal stacking
#N_d = 3008  # for all variables, horizontal stacking
N_c = 3008  # for all variables, vertical stacking
#N_c = 88*30 # for 3D variables, vertical stacking
N_d = 48602 # for all variables, vertical stacking
#N_c = 88       # for 3D variables, vertical stacking (ncol & lev distributed)
#N_d = 30*48602 # for 3D variables, vertical stacking (ncol & lev distributed)

In [5]:
o = o_raw.set_index(["K","M","STATISTIC"]).loc[:,"VALUE"].unstack()
v = v_raw.set_index(["K","M","STATISTIC","VARIABLE"]).loc[:,"VALUE"].unstack().unstack()

Read variable information


In [6]:
vi_raw = pd.read_table("variable_information.txt")
vi = vi_raw.set_index(["VARIABLE","INFO"]).unstack().loc[:,"VALUE"]
vi["levels"] = vi["levels"].astype("int")
vi.columns.name = ""

Limits for K & M


In [7]:
%pylab inline


Populating the interactive namespace from numpy and matplotlib

In [8]:
original_size = N_c * N_d
compressed_size = lambda K, M: N_d + N_c * K + N_d * M + N_c * K * M

M_max = lambda K: N_c * N_d / (N_d + K * N_c) - 1
plt.plot(arange(1,201), M_max(arange(1, 201)))


Out[8]:
[<matplotlib.lines.Line2D at 0x7f53dec34e80>]

Add fixed compression ratio


In [9]:
o["compression_ratio_fixed"] = compressed_size(array(o.index.get_level_values("K")),array(o.index.get_level_values("M"))) / original_size
o.loc[:,"compression_ratio_fixed"].unstack("K")


Out[9]:
K 1 2 3 4 5 6 7 8 9 10
M
10 0.003883 0.004110 0.004336 0.004562 0.004789 0.005015 0.005241 0.005468 0.005694 0.005920
20 0.007413 0.007846 0.008278 0.008710 0.009142 0.009574 0.010006 0.010438 0.010870 0.011302
30 0.010944 0.011582 0.012219 0.012857 0.013495 0.014133 0.014771 0.015409 0.016046 0.016684
40 0.014474 0.015317 0.016161 0.017005 0.017848 0.018692 0.019535 0.020379 0.021223 0.022066
50 0.018004 0.019053 0.020103 0.021152 0.022201 0.023251 0.024300 0.025350 0.026399 0.027448
60 0.021534 0.022789 0.024045 0.025300 0.026555 0.027810 0.029065 0.030320 0.031575 0.032830
70 0.025065 0.026525 0.027986 0.029447 0.030908 0.032369 0.033830 0.035290 0.036751 0.038212
80 0.028595 0.030261 0.031928 0.033595 0.035261 0.036928 0.038594 0.040261 0.041928 0.043594
90 0.032125 0.033997 0.035870 0.037742 0.039614 0.041487 0.043359 0.045231 0.047104 0.048976
100 0.035655 0.037733 0.039811 0.041890 0.043968 0.046046 0.048124 0.050202 0.052280 0.054358
110 0.039185 0.041469 0.043753 0.046037 0.048321 0.050605 0.052889 0.055172 0.057456 0.059740
120 0.042716 0.045205 0.047695 0.050185 0.052674 0.055164 0.057653 0.060143 0.062633 0.065122
130 0.046246 0.048941 0.051637 0.054332 0.057027 0.059723 0.062418 0.065113 0.067809 0.070504
140 0.049776 0.052677 0.055578 0.058479 0.061381 0.064282 0.067183 0.070084 0.072985 0.075886
150 0.053306 0.056413 0.059520 0.062627 0.065734 0.068841 0.071948 0.075054 0.078161 0.081268
160 0.056837 0.060149 0.063462 0.066774 0.070087 0.073400 0.076712 0.080025 0.083338 0.086650
170 0.060367 0.063885 0.067404 0.070922 0.074440 0.077959 0.081477 0.084995 0.088514 0.092032
180 0.063897 0.067621 0.071345 0.075069 0.078794 0.082518 0.086242 0.089966 0.093690 0.097414
190 0.067427 0.071357 0.075287 0.079217 0.083147 0.087077 0.091006 0.094936 0.098866 0.102796
200 0.070957 0.075093 0.079229 0.083364 0.087500 0.091636 0.095771 0.099907 0.104042 0.108178

Overall Statistics


In [10]:
o.loc[:,"L_final"].unstack("K").plot()


Out[10]:
<matplotlib.axes.AxesSubplot at 0x7f53dec045c0>

In [11]:
o.loc[:,"iterations"].unstack("K")


Out[11]:
K 1 2 3 4 5 6 7 8 9 10
M
10 1 25 23 34 82 65 62 69 45 52
20 1 25 23 34 82 65 62 69 45 52
30 1 25 23 34 82 65 62 69 45 52
40 1 25 23 34 82 65 62 69 45 52
50 1 25 23 34 82 65 62 69 45 52
60 1 25 23 34 82 65 62 69 45 52
70 1 25 23 34 82 65 62 69 45 52
80 1 25 23 34 82 65 62 69 45 52
90 1 25 23 34 82 65 62 69 45 52
100 1 25 23 34 82 65 62 69 45 52
110 1 25 23 34 82 65 62 69 45 52
120 1 25 23 34 82 65 62 69 45 52
130 1 25 23 34 82 65 62 69 45 52
140 1 25 23 34 82 65 62 69 45 52
150 1 25 23 34 82 65 62 69 45 52
160 1 25 23 34 82 65 62 69 45 52
170 1 25 23 34 82 65 62 69 45 52
180 1 25 23 34 82 65 62 69 45 52
190 1 25 23 34 82 65 62 69 45 52
200 1 25 23 34 82 65 62 69 45 52

In [12]:
o.loc[:,"compression_ratio_fixed"].unstack("K")


Out[12]:
K 1 2 3 4 5 6 7 8 9 10
M
10 0.003883 0.004110 0.004336 0.004562 0.004789 0.005015 0.005241 0.005468 0.005694 0.005920
20 0.007413 0.007846 0.008278 0.008710 0.009142 0.009574 0.010006 0.010438 0.010870 0.011302
30 0.010944 0.011582 0.012219 0.012857 0.013495 0.014133 0.014771 0.015409 0.016046 0.016684
40 0.014474 0.015317 0.016161 0.017005 0.017848 0.018692 0.019535 0.020379 0.021223 0.022066
50 0.018004 0.019053 0.020103 0.021152 0.022201 0.023251 0.024300 0.025350 0.026399 0.027448
60 0.021534 0.022789 0.024045 0.025300 0.026555 0.027810 0.029065 0.030320 0.031575 0.032830
70 0.025065 0.026525 0.027986 0.029447 0.030908 0.032369 0.033830 0.035290 0.036751 0.038212
80 0.028595 0.030261 0.031928 0.033595 0.035261 0.036928 0.038594 0.040261 0.041928 0.043594
90 0.032125 0.033997 0.035870 0.037742 0.039614 0.041487 0.043359 0.045231 0.047104 0.048976
100 0.035655 0.037733 0.039811 0.041890 0.043968 0.046046 0.048124 0.050202 0.052280 0.054358
110 0.039185 0.041469 0.043753 0.046037 0.048321 0.050605 0.052889 0.055172 0.057456 0.059740
120 0.042716 0.045205 0.047695 0.050185 0.052674 0.055164 0.057653 0.060143 0.062633 0.065122
130 0.046246 0.048941 0.051637 0.054332 0.057027 0.059723 0.062418 0.065113 0.067809 0.070504
140 0.049776 0.052677 0.055578 0.058479 0.061381 0.064282 0.067183 0.070084 0.072985 0.075886
150 0.053306 0.056413 0.059520 0.062627 0.065734 0.068841 0.071948 0.075054 0.078161 0.081268
160 0.056837 0.060149 0.063462 0.066774 0.070087 0.073400 0.076712 0.080025 0.083338 0.086650
170 0.060367 0.063885 0.067404 0.070922 0.074440 0.077959 0.081477 0.084995 0.088514 0.092032
180 0.063897 0.067621 0.071345 0.075069 0.078794 0.082518 0.086242 0.089966 0.093690 0.097414
190 0.067427 0.071357 0.075287 0.079217 0.083147 0.087077 0.091006 0.094936 0.098866 0.102796
200 0.070957 0.075093 0.079229 0.083364 0.087500 0.091636 0.095771 0.099907 0.104042 0.108178

In [13]:
o.loc[:,"lanczos_max"].unstack("K")


Out[13]:
K 1 2 3 4 5 6 7 8 9 10
M
10 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0
150 0 0 0 0 0 0 0 0 0 0
160 0 0 0 0 0 0 0 0 0 0
170 0 0 0 0 0 0 0 0 0 0
180 0 0 0 0 0 0 0 0 0 0
190 0 0 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0 0

In [14]:
o.loc[:,"lanczos_max_converged"].unstack("K")


Out[14]:
K 1 2 3 4 5 6 7 8 9 10
M
10 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0
150 0 0 0 0 0 0 0 0 0 0
160 0 0 0 0 0 0 0 0 0 0
170 0 0 0 0 0 0 0 0 0 0
180 0 0 0 0 0 0 0 0 0 0
190 0 0 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0 0

In [15]:
o.loc[:,"lanczos_mean"].unstack("K")


Out[15]:
K 1 2 3 4 5 6 7 8 9 10
M
10 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0
150 0 0 0 0 0 0 0 0 0 0
160 0 0 0 0 0 0 0 0 0 0
170 0 0 0 0 0 0 0 0 0 0
180 0 0 0 0 0 0 0 0 0 0
190 0 0 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0 0

In [16]:
o.loc[:,"lanczos_mean_converged"].unstack("K")


Out[16]:
K 1 2 3 4 5 6 7 8 9 10
M
10 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0
150 0 0 0 0 0 0 0 0 0 0
160 0 0 0 0 0 0 0 0 0 0
170 0 0 0 0 0 0 0 0 0 0
180 0 0 0 0 0 0 0 0 0 0
190 0 0 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0 0

In [17]:
o.loc[:,"lanczos_min"].unstack("K")


Out[17]:
K 1 2 3 4 5 6 7 8 9 10
M
10 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0
150 0 0 0 0 0 0 0 0 0 0
160 0 0 0 0 0 0 0 0 0 0
170 0 0 0 0 0 0 0 0 0 0
180 0 0 0 0 0 0 0 0 0 0
190 0 0 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0 0

In [18]:
o.loc[:,"lanczos_min_converged"].unstack("K")


Out[18]:
K 1 2 3 4 5 6 7 8 9 10
M
10 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0
80 0 0 0 0 0 0 0 0 0 0
90 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 0 0
130 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 0
150 0 0 0 0 0 0 0 0 0 0
160 0 0 0 0 0 0 0 0 0 0
170 0 0 0 0 0 0 0 0 0 0
180 0 0 0 0 0 0 0 0 0 0
190 0 0 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0 0

In [19]:
o.loc[:,"time_input"].unstack("K")


Out[19]:
K 1 2 3 4 5 6 7 8 9 10
M
10 42.97990 9.94910 15.50650 16.26390 16.33430 16.42610 13.73750 11.08370 8.88494 15.87870
20 43.31800 8.69896 14.32550 17.71960 17.01740 9.21970 15.57390 11.12010 8.92646 11.58560
30 41.07940 8.88053 15.71720 8.21382 16.41150 8.49662 15.67260 11.05070 8.59100 11.87890
40 40.13400 9.01983 15.58890 8.22454 15.52080 9.21106 10.85090 11.05080 9.71850 16.04650
50 40.56170 10.52100 15.71000 10.51600 16.31130 8.52261 10.74600 11.07480 8.90190 7.39747
60 39.79010 12.31600 9.63148 10.28730 17.42060 15.77360 15.70030 11.04200 8.61949 7.59818
70 40.01110 8.88096 9.61642 9.03971 16.44650 10.94510 12.67260 11.06410 16.98880 9.00765
80 40.06760 8.98192 9.24652 8.77061 17.27780 7.56561 12.17040 10.85300 11.80230 9.24272
90 39.88680 15.57000 9.40810 17.18210 16.87550 7.56736 8.71712 10.92020 11.97840 16.61890
100 41.97040 15.58590 9.39768 16.72030 16.27970 9.90925 8.66113 10.87130 15.79540 15.62000
110 39.90300 15.16340 9.38203 16.58550 16.37800 8.67999 13.32640 10.89030 16.72940 16.48130
120 10.08230 15.04360 9.33654 16.33400 15.96070 8.71561 12.22330 11.05160 12.07700 16.58180
130 9.94383 14.61300 11.95540 41.06550 9.10636 13.86890 15.67910 11.04560 12.13590 16.31410
140 10.09190 15.80480 8.57795 15.93490 8.91187 7.78253 8.85068 10.99800 16.23130 16.13240
150 9.89135 15.56120 8.65707 17.03530 15.79020 8.41629 8.85053 11.05280 7.57112 15.18230
160 10.06290 15.58560 8.46989 16.20200 15.29000 16.50920 16.92730 11.07280 7.46672 15.81580
170 10.48760 15.60910 9.98515 16.91990 16.80620 15.87950 8.64900 15.52910 8.61146 8.54116
180 10.06620 15.71460 8.39660 17.60180 16.71690 13.14440 8.85717 11.30130 8.61399 8.39741
190 9.91562 15.56150 17.18500 16.33050 16.05120 10.06690 16.76520 8.90050 13.72930 11.48390
200 9.86038 15.20310 17.43150 17.60460 15.69840 9.85547 16.25000 9.07867 15.14500 12.22830

In [20]:
o.loc[:,"time_solve"].unstack("K") / 60


Out[20]:
K 1 2 3 4 5 6 7 8 9 10
M
10 0.083017 0.533903 0.582618 0.815680 1.975067 1.697800 1.857783 2.319100 1.516485 1.953733
20 0.143521 0.605242 0.702655 0.919577 2.105850 1.827583 2.030150 2.499233 1.680750 2.125500
30 0.253987 0.778828 0.883903 1.104117 2.279583 2.014033 2.247583 2.743467 1.900367 2.418850
40 0.387565 0.915927 1.113708 1.330282 2.508250 2.217483 2.524767 3.076883 2.193517 2.724633
50 0.516195 1.069355 1.376312 1.585813 2.767900 2.537383 2.859900 3.504650 2.534433 3.209067
60 0.700507 1.396838 1.639628 1.846417 3.138933 2.860467 3.286517 3.919850 2.949400 3.713817
70 0.879533 1.614903 2.045217 2.178000 3.520133 3.302800 3.757383 4.456500 3.441767 4.271950
80 1.123257 1.915567 2.400533 2.649083 3.924133 3.714150 4.331600 5.117900 3.929083 4.862833
90 1.397782 2.238433 2.798983 3.062767 4.337550 4.154900 4.892067 5.740917 4.517000 5.564883
100 1.637312 2.563967 3.378117 3.478000 4.898133 4.739633 5.355083 6.315700 5.153283 6.226283
110 1.875217 2.919017 3.939083 4.009633 5.298350 5.229717 6.106200 7.084367 5.892183 7.128550
120 2.224200 3.510300 4.375900 4.818783 5.796133 5.794333 6.721917 8.130100 6.628650 7.974383
130 2.535400 3.896233 4.804600 4.873667 6.591483 6.278900 7.563233 8.892217 7.317000 8.743267
140 2.899283 4.275233 5.720117 5.585800 7.370467 7.078067 8.459467 9.699933 8.134467 9.791983
150 3.160817 4.845817 6.070700 6.270733 8.007517 7.759133 9.451250 10.707683 9.210817 11.063317
160 3.708233 5.492567 6.675500 6.777383 8.714017 8.770400 10.263917 11.792933 10.221867 12.066733
170 4.005117 5.686167 7.610800 7.696983 9.525933 9.433567 11.317400 12.968333 10.841850 13.189450
180 4.116850 6.392467 8.361500 8.293267 10.214050 10.452950 12.222883 13.952133 11.890767 14.461517
190 4.993733 6.999350 9.310950 8.884667 11.032817 11.159967 13.353917 15.261900 13.204033 15.455800
200 5.339817 7.765733 9.958267 9.901300 12.171550 12.298100 14.445067 16.904833 14.169083 16.771500

Variable Statistics


In [21]:
statistics_of_interest = ["rms_error","max_error","precisionbits","srr","correlation"]

In [22]:
v.mean(axis=0).unstack()[statistics_of_interest].join(vi)


Out[22]:
rms_error max_error precisionbits srr correlation levels name
VARIABLE
ABSORB 0.001467 0.217074 1.667108 3.295136 0.981809 30 Aerosol absorption
AEROD_v 0.004679 0.093269 3.252420 4.229692 0.990865 1 Total Aerosol Optical Depth in visible band
ANRAIN 0.006887 0.479828 0.264864 2.984493 0.985676 30 Average rain number conc
ANSNOW 0.004095 0.338459 0.857183 2.180191 0.967410 30 Average snow number conc
AODABS 0.004366 0.117032 2.807556 4.099596 0.990065 1 Aerosol absorption optical depth 550 nm
AODDUST1 0.006773 0.102084 2.823611 3.837607 0.989125 1 Aerosol optical depth 550 nm model 1 from dust
AODDUST3 0.004525 0.108660 2.990315 4.029360 0.989314 1 Aerosol optical depth 550 nm model 3 from dust
AODMODE1 0.007950 0.090349 3.033658 4.167597 0.992492 1 Aerosol optical depth 550 nm mode 1
AODMODE2 0.009033 0.274097 1.332021 2.626025 0.953269 1 Aerosol optical depth 550 nm mode 2
AODMODE3 0.004547 0.108180 3.001464 4.030117 0.989037 1 Aerosol optical depth 550 nm mode 3
AODVIS 0.004679 0.093269 3.252420 4.229692 0.990865 1 Aerosol optical depth 550 nm
AQRAIN 0.002916 0.218896 1.599774 3.074270 0.984777 30 Average rain mixing ratio
AQSNOW 0.003176 0.268212 1.257473 3.361745 0.990175 30 Average snow mixing ratio
AREI 0.007126 0.191995 1.770409 4.410668 0.996969 30 Average ice effective radius
AREL 0.006193 0.259059 1.234031 4.535346 0.997219 30 Average droplet effective radius
ATMEINT 0.006089 0.079286 3.301977 5.476003 0.997366 1 Vertically integrated total atmospheric energy
AWNC 0.005969 0.221180 1.421845 3.360092 0.988563 30 Average cloud water number conc
AWNI 0.004364 0.202741 1.725367 3.261343 0.987636 30 Average cloud ice number conc
BURDEN1 0.005692 0.086299 3.222393 4.193424 0.992325 1 Aerosol burden mode 1
BURDEN2 0.010478 0.285589 1.461173 2.792766 0.949315 1 Aerosol burden mode 2
BURDEN3 0.004366 0.136551 2.506415 3.759967 0.987204 1 Aerosol burden mode 3
CCN3 0.003192 0.186441 1.900958 4.206911 0.995308 30 CCN concentration at S=0.1%
CDNUMC 0.011280 0.149119 2.202505 3.464438 0.984600 1 Vertically-integrated droplet concentration
CLDFSNOW 0.005886 0.137916 2.151002 4.724054 0.998163 30 CLDFSNOW
CLDHGH 0.010871 0.095210 2.794603 4.194362 0.995272 1 Vertically-integrated high cloud
CLDICE 0.002553 0.120254 2.446547 3.498578 0.992023 30 Grid box averaged cloud ice amount
CLDLIQ 0.005084 0.235631 1.411061 3.458221 0.990317 30 Grid box averaged cloud liquid amount
CLDLOW 0.011214 0.184445 2.070033 5.089144 0.997546 1 Vertically-integrated low cloud
CLDMED 0.011042 0.191403 1.675948 4.229055 0.996759 1 Vertically-integrated mid-level cloud
CLDTOT 0.011067 0.104695 2.700284 4.632549 0.996781 1 Vertically-integrated total cloud
... ... ... ... ... ... ... ...
WGUSTD 0.012423 0.189505 1.776587 3.312548 0.981893 1 wind gusts from turbulence
WSUB 0.004067 0.142639 2.296229 4.606386 0.997205 30 Diagnostic sub-grid vertical velocity
WTKE 0.004067 0.142639 2.296229 4.606386 0.997205 30 Standard deviation of updraft velocity
Z3 0.000677 0.014161 5.778648 9.406384 0.999991 30 Geopotential Height (above sea level)
bc_a1 0.003380 0.208501 1.699095 3.095448 0.978915 30 bc_a1 concentration
dgnd_a01 0.005143 0.146678 2.219933 4.862490 0.997793 30 dry dgnum, interstitial, mode 01
dgnd_a02 0.006322 0.114046 2.412585 5.062347 0.998209 30 dry dgnum, interstitial, mode 02
dgnd_a03 0.005722 0.124622 2.346163 4.133092 0.995825 30 dry dgnum, interstitial, mode 03
dgnw_a01 0.005321 0.138765 2.296636 5.520037 0.999123 30 wet dgnum, interstitial, mode 01
dgnw_a02 0.005406 0.103211 2.647615 5.495297 0.999194 30 wet dgnum, interstitial, mode 02
dgnw_a03 0.006635 0.169771 1.968442 5.248636 0.999030 30 wet dgnum, interstitial, mode 03
dst_a1 0.002306 0.210160 1.629192 3.269843 0.983426 30 dst_a1 concentration
dst_a1SF 0.004886 0.627142 -0.095978 0.859491 0.695058 1 dst_a1 dust surface emission
dst_a3 0.001856 0.207706 1.682591 3.092108 0.978208 30 dst_a3 concentration
dst_a3SF 0.004886 0.627142 -0.095978 0.859491 0.695058 1 dst_a3 dust surface emission
ncl_a1 0.004213 0.122508 2.304085 5.219200 0.998652 30 ncl_a1 concentration
ncl_a2 0.003811 0.117472 2.307051 4.961108 0.998177 30 ncl_a2 concentration
ncl_a3 0.004551 0.146352 1.965695 5.493614 0.999003 30 ncl_a3 concentration
num_a1 0.002818 0.288731 1.264885 2.985674 0.978747 30 num_a1 concentration
num_a2 0.004452 0.344714 0.911881 2.547357 0.962337 30 num_a2 concentration
num_a3 0.002258 0.208242 1.639729 3.395467 0.985971 30 num_a3 concentration
pom_a1 0.003114 0.314294 1.044180 2.888264 0.972639 30 pom_a1 concentration
so4_a1 0.005247 0.125397 2.400111 4.231615 0.993735 30 so4_a1 concentration
so4_a2 0.003561 0.419844 0.709966 2.132497 0.926999 30 so4_a2 concentration
so4_a3 0.004629 0.226972 1.506700 3.697342 0.984864 30 so4_a3 concentration
soa_a1 0.003675 0.143745 2.074490 3.570641 0.989913 30 soa_a1 concentration
soa_a2 0.004887 0.245735 1.441618 2.924345 0.975632 30 soa_a2 concentration
wat_a1 0.004999 0.245158 1.433154 4.345703 0.996745 30 aerosol water, interstitial, mode 01
wat_a2 0.002958 0.325752 1.096198 2.718148 0.971210 30 aerosol water, interstitial, mode 02
wat_a3 0.005317 0.193280 1.618580 4.742294 0.997950 30 aerosol water, interstitial, mode 03

186 rows × 7 columns


In [23]:
v.mean(axis=1,level="STATISTIC")[statistics_of_interest]


Out[23]:
STATISTIC rms_error max_error precisionbits srr correlation
K M
1 10 0.032613 0.558757 0.026621 1.554078 0.873119
20 0.022761 0.477184 0.322678 2.035921 0.919614
30 0.017676 0.421664 0.547743 2.384021 0.937093
40 0.014652 0.380159 0.719347 2.642628 0.950439
50 0.012387 0.333471 0.944553 2.897084 0.960944
60 0.010741 0.303019 1.116428 3.114140 0.966650
70 0.009491 0.270752 1.301510 3.293191 0.971755
80 0.008459 0.248603 1.445139 3.458535 0.975514
90 0.007528 0.226416 1.630676 3.627225 0.978230
100 0.006783 0.207941 1.770880 3.772235 0.980854
110 0.006155 0.194422 1.887100 3.906495 0.982478
120 0.005602 0.179617 2.028047 4.038655 0.984053
130 0.005078 0.166141 2.161475 4.168980 0.985168
140 0.004636 0.155347 2.260499 4.297271 0.986745
150 0.004224 0.143907 2.377828 4.412588 0.988654
160 0.003865 0.134175 2.482508 4.531365 0.989652
170 0.003598 0.127328 2.566201 4.628785 0.990111
180 0.003359 0.120923 2.637349 4.726216 0.990721
190 0.003136 0.114491 2.738418 4.827706 0.991189
200 0.002931 0.108098 2.841470 4.923266 0.991673
2 10 0.029116 0.541185 0.091786 1.711856 0.890421
20 0.019743 0.442116 0.427316 2.228669 0.932706
30 0.015137 0.383848 0.677909 2.599401 0.949513
40 0.012470 0.340357 0.872866 2.877093 0.961129
50 0.010400 0.288785 1.149991 3.154917 0.969615
60 0.009021 0.256475 1.359411 3.358547 0.974699
70 0.007842 0.231775 1.533854 3.556741 0.978073
80 0.006889 0.210270 1.687870 3.740784 0.980980
90 0.006124 0.190196 1.854390 3.906308 0.983257
100 0.005504 0.175505 1.981879 4.059663 0.984741
... ... ... ... ... ... ...
9 110 0.002782 0.094374 2.797765 5.013485 0.996318
120 0.002512 0.082843 2.946283 5.152317 0.997680
130 0.002274 0.074714 3.098169 5.292548 0.998644
140 0.002081 0.068202 3.246845 5.417917 0.998906
150 0.001917 0.062985 3.362109 5.533344 0.999038
160 0.001772 0.058264 3.490930 5.643580 0.999168
170 0.001635 0.052899 3.638873 5.755664 0.999277
180 0.001525 0.049159 3.756998 5.854614 0.999349
190 0.001429 0.046101 3.860802 5.946728 0.999413
200 0.001334 0.042846 3.970926 6.043406 0.999467
10 10 0.018575 0.423196 0.474407 2.327416 0.944117
20 0.011957 0.332279 0.882937 2.945056 0.968691
30 0.008868 0.275008 1.207679 3.374942 0.977232
40 0.007049 0.227183 1.532244 3.704354 0.982189
50 0.005750 0.191070 1.819766 3.999339 0.985279
60 0.004828 0.165970 2.042113 4.240312 0.988533
70 0.004145 0.143698 2.262235 4.459335 0.991887
80 0.003604 0.125297 2.457762 4.651643 0.993959
90 0.003168 0.110530 2.640131 4.828030 0.995349
100 0.002814 0.099847 2.781825 4.990386 0.996665
110 0.002509 0.089355 2.934708 5.149199 0.997753
120 0.002257 0.076193 3.119781 5.296329 0.998078
130 0.002044 0.068117 3.288772 5.434620 0.998301
140 0.001865 0.061987 3.436399 5.562975 0.998488
150 0.001707 0.056384 3.599720 5.689856 0.998629
160 0.001572 0.051557 3.740192 5.806754 0.998754
170 0.001458 0.047120 3.856658 5.915552 0.998937
180 0.001354 0.043330 3.963846 6.020019 0.999090
190 0.001264 0.039919 4.069947 6.119300 0.999217
200 0.001179 0.036685 4.171292 6.217852 0.999405

200 rows × 5 columns

Best variables


In [24]:
v.mean(axis=0).unstack()[statistics_of_interest].sort("rms_error").head(20).join(vi)
v.mean(axis=0).unstack()[statistics_of_interest + ["min_original", "min_reconstructed", "max_original"]].sort("rms_error").head(20).join(vi)
v.loc(axis=0)[10,200].unstack()[statistics_of_interest].sort("rms_error").head(20).join(vi)


Out[24]:
rms_error max_error precisionbits srr correlation levels name
VARIABLE
Z3 0.000093 0.001825 8.09788 11.48360 1.000000 30 Geopotential Height (above sea level)
SL 0.000187 0.004193 6.89782 10.15920 1.000000 30 Liquid water static energy
SLV 0.000187 0.004150 6.91255 10.15060 1.000000 30 Liq wat virtual static energy
ABSORB 0.000347 0.051824 3.27025 4.95593 0.999481 30 Aerosol absorption
UFLX 0.000376 0.045725 3.45087 3.62299 0.996701 31 Zonal momentum flux
SNOWHICE 0.000386 0.008948 5.80428 8.26936 0.999995 1 Water equivalent snow depth
EXTINCT 0.000392 0.048715 3.35948 5.41888 0.999727 30 Aerosol extinction
dst_a3 0.000459 0.037725 3.72834 4.72287 0.999283 30 dst_a3 concentration
T 0.000492 0.013920 5.16672 9.19041 0.999999 30 Temperature
LHFLX 0.000511 0.007705 6.01995 8.69611 0.999997 1 Surface latent heat flux
num_a3 0.000511 0.039075 3.67762 5.15034 0.999603 30 num_a3 concentration
QFLX 0.000513 0.007708 6.01934 8.69396 0.999997 1 Surface water flux
dst_a1 0.000531 0.040611 3.62199 5.00558 0.999515 30 dst_a1 concentration
FSNT 0.000548 0.005119 6.60992 8.78762 0.999997 1 Net solar flux at top of model
FSNTOA 0.000551 0.005012 6.64054 8.77884 0.999997 1 Net solar flux at top of atmosphere
FSNS 0.000573 0.008808 5.82698 8.63233 0.999997 1 Net solar flux at surface
VFLX 0.000573 0.044507 3.48981 3.28978 0.994758 31 Meridional momentm flux
TSMN 0.000577 0.006990 6.16045 8.16407 0.999994 1 Minimum surface temperature over output period
TS 0.000577 0.006990 6.16045 8.16407 0.999994 1 Surface temperature (radiative)
TSMX 0.000577 0.006990 6.16045 8.16407 0.999994 1 Maximum surface temperature over output period

In [25]:
v.mean(axis=0).unstack()[statistics_of_interest].sort("max_error").head(20).join(vi)
v.loc(axis=0)[10,200].unstack()[statistics_of_interest].sort("max_error").head(20).join(vi)


Out[25]:
rms_error max_error precisionbits srr correlation levels name
VARIABLE
Z3 0.000093 0.001825 8.09788 11.48360 1.000000 30 Geopotential Height (above sea level)
SLV 0.000187 0.004150 6.91255 10.15060 1.000000 30 Liq wat virtual static energy
SL 0.000187 0.004193 6.89782 10.15920 1.000000 30 Liquid water static energy
FSNTOA 0.000551 0.005012 6.64054 8.77884 0.999997 1 Net solar flux at top of atmosphere
FSNT 0.000548 0.005119 6.60992 8.78762 0.999997 1 Net solar flux at top of model
TREFHT 0.000698 0.006678 6.22644 7.93538 0.999992 1 Reference height temperature
TSMX 0.000577 0.006990 6.16045 8.16407 0.999994 1 Maximum surface temperature over output period
TSMN 0.000577 0.006990 6.16045 8.16407 0.999994 1 Minimum surface temperature over output period
TS 0.000577 0.006990 6.16045 8.16407 0.999994 1 Surface temperature (radiative)
FLUTC 0.000668 0.007469 6.06482 7.97354 0.999992 1 Clearsky upwelling longwave flux at top of model
FLNTC 0.000669 0.007475 6.06361 7.97172 0.999992 1 Clearsky net longwave flux at top of model
LHFLX 0.000511 0.007705 6.01995 8.69611 0.999997 1 Surface latent heat flux
QFLX 0.000513 0.007708 6.01934 8.69396 0.999997 1 Surface water flux
SRFRAD 0.000633 0.008004 5.96512 8.37901 0.999995 1 Net radiative flux at surface
FSNS 0.000573 0.008808 5.82698 8.63233 0.999997 1 Net solar flux at surface
SNOWHICE 0.000386 0.008948 5.80428 8.26936 0.999995 1 Water equivalent snow depth
SOLIN 0.001105 0.009228 5.75970 8.02962 0.999993 1 Solar insolation
FLUT 0.001242 0.010120 5.62666 7.13715 0.999975 1 Upwelling longwave flux at top of model
FLNT 0.001245 0.010166 5.62016 7.13376 0.999975 1 Net longwave flux at top of model
FLDS 0.000942 0.010468 5.57788 7.62895 0.999987 1 Downwelling longwave flux at surface

In [26]:
#v.loc(axis=0)[8:10,:]#.mean(axis=0).unstack()[statistics_of_interest].sort("precisionbits", ascending=False).head(20).join(vi)
v.loc(axis=0)[8,170].unstack()[statistics_of_interest].sort("precisionbits", ascending=False).head(20).join(vi)


Out[26]:
rms_error max_error precisionbits srr correlation levels name
VARIABLE
Z3 0.000131 0.003796 7.04134 10.99390 1.000000 30 Geopotential Height (above sea level)
TSMX 0.000772 0.008110 5.94603 7.74317 0.999989 1 Maximum surface temperature over output period
TSMN 0.000772 0.008110 5.94603 7.74317 0.999989 1 Minimum surface temperature over output period
TS 0.000772 0.008110 5.94603 7.74317 0.999989 1 Surface temperature (radiative)
SL 0.000256 0.008121 5.94406 9.70447 0.999999 30 Liquid water static energy
SLV 0.000256 0.008123 5.94381 9.69628 0.999999 30 Liq wat virtual static energy
FLUTC 0.000880 0.009109 5.77850 7.57660 0.999986 1 Clearsky upwelling longwave flux at top of model
FLNTC 0.000880 0.009172 5.76849 7.57549 0.999986 1 Clearsky net longwave flux at top of model
TREFHT 0.000874 0.009189 5.76585 7.61042 0.999987 1 Reference height temperature
QFLX 0.000783 0.010223 5.61197 8.08239 0.999993 1 Surface water flux
LHFLX 0.000783 0.010325 5.59771 8.08133 0.999993 1 Surface latent heat flux
TROP_Z 0.001536 0.013820 5.17709 7.33894 0.999981 1 Tropopause Height
FLDS 0.001150 0.014327 5.12512 7.34209 0.999981 1 Downwelling longwave flux at surface
FLUT 0.001656 0.016283 4.94048 6.72229 0.999955 1 Upwelling longwave flux at top of model
FLNT 0.001658 0.016320 4.93724 6.71986 0.999955 1 Net longwave flux at top of model
AODVIS 0.001036 0.016544 4.91755 5.75488 0.999829 1 Aerosol optical depth 550 nm
AEROD_v 0.001036 0.016544 4.91755 5.75488 0.999829 1 Total Aerosol Optical Depth in visible band
BURDEN1 0.001373 0.017326 4.85088 5.67473 0.999808 1 Aerosol burden mode 1
AODMODE1 0.002187 0.017587 4.82932 5.49059 0.999753 1 Aerosol optical depth 550 nm mode 1
TMQ 0.001359 0.017731 4.81756 7.49127 0.999985 1 Total (vertically integrated) precipitable water

Worst variables


In [27]:
#v.mean(axis=0).unstack()[statistics_of_interest].sort("rms_error", ascending=False).head(20).join(vi)
v.loc(axis=0)[10,200].unstack()[statistics_of_interest].sort("rms_error", ascending=False).head(20).join(vi)


Out[27]:
rms_error max_error precisionbits srr correlation levels name
VARIABLE
SSTSFMBL 0.002599 0.062668 2.99611 6.28976 0.999918 1 Mobilization flux at surface
CLDMED 0.002491 0.030366 4.04140 6.07505 0.999890 1 Vertically-integrated mid-level cloud
PSL 0.002299 0.024323 4.36156 6.29992 0.999919 1 Sea level pressure
FREQZM 0.002256 0.022684 4.46221 6.60402 0.999947 1 Fractional occurance of ZM convection
FREQS 0.002167 0.051397 3.28217 6.26081 0.999915 30 Fractional occurance of snow
TOT_ICLD_VISTAU 0.002156 0.137734 1.86004 4.22326 0.998566 30 Total in-cloud extinction visible sw optical d...
PRECSL 0.002120 0.077733 2.68533 5.59529 0.999786 1 Large-scale (stable) snow rate (water equivalent)
AODMODE2 0.002118 0.048138 3.37669 4.27573 0.998666 1 Aerosol optical depth 550 nm mode 2
PRECSC 0.002112 0.145466 1.78125 4.80423 0.999359 1 Convective snow rate (water equivalent)
CLDHGH 0.002105 0.022417 4.47926 6.13657 0.999899 1 Vertically-integrated high cloud
FICE 0.002078 0.080303 2.63840 7.15372 0.999975 30 Fractional ice content within cloud
ANRAIN 0.002065 0.118444 2.07772 4.51513 0.999043 30 Average rain number conc
SSAVIS 0.002043 0.019640 4.67005 6.58229 0.999946 1 Aerosol singel-scatter albedo
CDNUMC 0.002041 0.028572 4.12927 5.44676 0.999737 1 Vertically-integrated droplet concentration
TAUX 0.002005 0.037994 3.71808 5.60743 0.999790 1 Zonal surface stress
T850 0.002000 0.023772 4.39457 6.26535 0.999915 1 Temperature at 850 mbar pressure surface
PRECSH 0.001989 0.054360 3.20131 5.06256 0.999552 1 Shallow Convection precipitation rate
CLOUD 0.001950 0.038775 3.68873 6.15884 0.999902 30 Cloud fraction
AREI 0.001916 0.039118 3.67602 5.96171 0.999871 30 Average ice effective radius
BURDEN2 0.001903 0.030185 4.05005 4.68276 0.999242 1 Aerosol burden mode 2

In [28]:
#v.mean(axis=0).unstack()[statistics_of_interest].sort("max_error", ascending=False).head(20).join(vi)
v.loc(axis=0)[10,200].unstack()[statistics_of_interest].sort("max_error", ascending=False).head(20).join(vi)


Out[28]:
rms_error max_error precisionbits srr correlation levels name
VARIABLE
H2SO4 0.001470 0.190855 1.38945 4.13879 0.998387 30 H2SO4 concentration
PRECSC 0.002112 0.145466 1.78125 4.80423 0.999359 1 Convective snow rate (water equivalent)
TOT_ICLD_VISTAU 0.002156 0.137734 1.86004 4.22326 0.998566 30 Total in-cloud extinction visible sw optical d...
DSTSFMBL 0.001454 0.136540 1.87260 2.42167 0.982428 1 Mobilization flux at surface
dst_a1SF 0.001454 0.136540 1.87260 2.42167 0.982428 1 dst_a1 dust surface emission
dst_a3SF 0.001454 0.136540 1.87260 2.42167 0.982428 1 dst_a3 dust surface emission
ANRAIN 0.002065 0.118444 2.07772 4.51513 0.999043 30 Average rain number conc
QC 0.001253 0.109353 2.19294 5.66345 0.999805 30 Q tendency - shallow convection LW export
DMS 0.000813 0.102966 2.27976 6.07825 0.999890 30 DMS concentration
CMFDQR 0.001215 0.084831 2.55926 5.09065 0.999569 30 Q tendency - shallow convection rainout
ICWMR 0.001392 0.082268 2.60352 5.87033 0.999854 30 Prognostic in-cloud water mixing ratio
FICE 0.002078 0.080303 2.63840 7.15372 0.999975 30 Fractional ice content within cloud
PRECSL 0.002120 0.077733 2.68533 5.59529 0.999786 1 Large-scale (stable) snow rate (water equivalent)
wat_a2 0.000766 0.075513 2.72713 4.33234 0.998767 30 aerosol water, interstitial, mode 02
so4_a2 0.000856 0.071282 2.81032 3.83542 0.997543 30 so4_a2 concentration
AREL 0.001548 0.071075 2.81450 6.15519 0.999902 30 Average droplet effective radius
ICIMR 0.001259 0.070788 2.82035 5.20809 0.999634 30 Prognostic in-cloud ice mixing ratio
ANSNOW 0.001686 0.070543 2.82536 3.36209 0.995260 30 Average snow number conc
CMFMCDZM 0.001409 0.066729 2.90554 5.67453 0.999808 31 Convection mass flux from ZM deep
SO2 0.000983 0.065008 2.94325 4.54293 0.999079 30 SO2 concentration

Looking at single variables


In [29]:
# good variables
v.loc(axis=1)[("VT","V","Z3"),statistics_of_interest]


Out[29]:
VARIABLE V VT Z3
STATISTIC correlation max_error precisionbits rms_error srr correlation max_error precisionbits rms_error srr correlation max_error precisionbits rms_error srr
K M
1 10 0.759554 0.320530 0.641468 0.032731 0.620503 0.771228 0.311654 0.681982 0.034773 0.651632 0.999724 0.090627 2.46391 0.006284 5.41227
20 0.939839 0.263703 0.923015 0.017191 1.549550 0.939986 0.253047 0.982523 0.018639 1.551250 0.999890 0.050173 3.31695 0.003960 6.07840
30 0.959991 0.268408 0.897502 0.014092 1.836340 0.961757 0.251442 0.991700 0.014962 1.868250 0.999963 0.022637 4.46516 0.002298 6.86389
40 0.975119 0.238931 1.065340 0.011156 2.173420 0.976241 0.223306 1.162910 0.011837 2.206320 0.999978 0.020145 4.63341 0.001795 7.21998
50 0.982843 0.187085 1.418230 0.009281 2.438760 0.983566 0.172454 1.535710 0.009863 2.469520 0.999988 0.014424 5.11535 0.001310 7.67483
60 0.988409 0.174232 1.520920 0.007639 2.719650 0.988806 0.194202 1.364370 0.008151 2.744630 0.999993 0.013711 5.18849 0.000975 8.09981
70 0.991538 0.163582 1.611920 0.006533 2.945430 0.991852 0.178074 1.489450 0.006959 2.972610 0.999995 0.013992 5.15926 0.000843 8.30956
80 0.993840 0.146122 1.774760 0.005577 3.173600 0.993966 0.157166 1.669640 0.005992 3.188540 0.999996 0.013241 5.23886 0.000744 8.48994
90 0.995141 0.106122 2.236210 0.004955 3.344290 0.995184 0.110362 2.179690 0.005355 3.350760 0.999998 0.007202 6.11745 0.000597 8.80894
100 0.996077 0.101506 2.300360 0.004453 3.498310 0.996068 0.103150 2.277190 0.004839 3.496770 0.999998 0.006912 6.17669 0.000534 8.96871
110 0.996675 0.089815 2.476890 0.004100 3.617320 0.996695 0.089859 2.476190 0.004437 3.621870 0.999998 0.005892 6.40714 0.000483 9.11338
120 0.997084 0.083291 2.585700 0.003840 3.711940 0.997108 0.082948 2.591650 0.004152 3.717870 0.999999 0.005536 6.49681 0.000441 9.24373
130 0.997536 0.072485 2.786170 0.003531 3.833180 0.997563 0.075215 2.732830 0.003811 3.841210 0.999999 0.005233 6.57819 0.000399 9.38973
140 0.997869 0.066151 2.918100 0.003283 3.937990 0.997911 0.069813 2.840360 0.003529 3.952110 0.999999 0.005101 6.61512 0.000364 9.52295
150 0.998157 0.066450 2.911580 0.003054 4.042600 0.998210 0.066712 2.905900 0.003267 4.063500 0.999999 0.004958 6.65592 0.000335 9.64386
160 0.998353 0.064536 2.953760 0.002887 4.123530 0.998402 0.067213 2.895130 0.003087 4.145230 0.999999 0.004690 6.73611 0.000309 9.75640
170 0.998502 0.064745 2.949080 0.002753 4.191940 0.998545 0.065323 2.936280 0.002946 4.212860 0.999999 0.004549 6.78029 0.000292 9.84042
180 0.998681 0.062756 2.994100 0.002584 4.283770 0.998735 0.062751 2.994220 0.002747 4.313620 0.999999 0.004437 6.81630 0.000275 9.92714
190 0.998850 0.057343 3.124250 0.002413 4.382360 0.998895 0.055635 3.167860 0.002567 4.411400 1.000000 0.004366 6.83947 0.000250 10.06400
200 0.998977 0.054628 3.194210 0.002275 4.467070 0.999024 0.055729 3.165430 0.002413 4.500780 1.000000 0.004104 6.92888 0.000230 10.18420
2 10 0.828131 0.279177 0.840749 0.028207 0.835124 0.830367 0.306200 0.707454 0.030439 0.843688 0.999780 0.087599 2.51294 0.005609 5.57619
20 0.948576 0.264394 0.919238 0.015929 1.659500 0.949386 0.249217 1.004530 0.017159 1.670640 0.999944 0.051610 3.27621 0.002840 6.55827
30 0.970886 0.223072 1.164420 0.012054 2.061640 0.972108 0.212997 1.231100 0.012812 2.092130 0.999976 0.042172 3.56758 0.001864 7.16559
40 0.981364 0.186594 1.422020 0.009670 2.379620 0.981894 0.174893 1.515450 0.010348 2.400240 0.999986 0.032357 3.94977 0.001405 7.57340
50 0.988615 0.160850 1.636210 0.007572 2.732480 0.988912 0.174811 1.516130 0.008112 2.751420 0.999993 0.028359 4.14005 0.001026 8.02685
60 0.992338 0.140735 1.828950 0.006217 3.016800 0.992501 0.147790 1.758380 0.006677 3.032230 0.999995 0.017476 4.83848 0.000880 8.24898
70 0.994569 0.106140 2.235960 0.005237 3.264280 0.994592 0.111549 2.164250 0.005674 3.267270 0.999997 0.014754 5.08277 0.000703 8.57239
80 0.995860 0.094937 2.396890 0.004574 3.459530 0.995837 0.099517 2.328920 0.004980 3.455520 0.999997 0.015572 5.00486 0.000616 8.76409
90 0.996790 0.076823 2.702330 0.004029 3.642780 0.996771 0.085668 2.545100 0.004386 3.638490 0.999998 0.012530 5.31844 0.000533 8.97106
100 0.997377 0.072244 2.790980 0.003642 3.788300 0.997370 0.075306 2.731090 0.003959 3.786240 0.999998 0.012194 5.35765 0.000484 9.11030
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
9 110 0.999259 0.040171 3.637690 0.001937 4.699160 0.999249 0.037627 3.732100 0.002116 4.690010 1.000000 0.005735 6.44598 0.000226 10.20760
120 0.999380 0.031648 3.981730 0.001772 4.827430 0.999373 0.029946 4.061490 0.001935 4.819320 1.000000 0.005295 6.56127 0.000206 10.34540
130 0.999468 0.030439 4.037950 0.001642 4.937930 0.999461 0.029962 4.060730 0.001793 4.928880 1.000000 0.004524 6.78831 0.000186 10.49330
140 0.999550 0.029633 4.076630 0.001509 5.059320 0.999547 0.028917 4.111960 0.001644 5.054040 1.000000 0.003860 7.01734 0.000169 10.63250
150 0.999616 0.025663 4.284160 0.001394 5.174160 0.999614 0.024657 4.341830 0.001518 5.169490 1.000000 0.003367 7.21443 0.000154 10.75840
160 0.999672 0.024224 4.367390 0.001289 5.287170 0.999670 0.023745 4.396240 0.001403 5.283260 1.000000 0.002772 7.49461 0.000139 10.90840
170 0.999714 0.021305 4.552670 0.001204 5.385300 0.999712 0.019384 4.688980 0.001310 5.382090 1.000000 0.002503 7.64214 0.000131 10.99800
180 0.999752 0.019196 4.703050 0.001121 5.488490 0.999750 0.017616 4.826950 0.001220 5.484260 1.000000 0.002164 7.85212 0.000120 11.11970
190 0.999782 0.017925 4.801860 0.001051 5.581670 0.999781 0.017569 4.830810 0.001144 5.577930 1.000000 0.002007 7.96039 0.000110 11.24430
200 0.999811 0.014866 5.071860 0.000978 5.685620 0.999810 0.014415 5.116290 0.001064 5.682640 1.000000 0.001893 8.04499 0.000102 11.35870
10 10 0.938356 0.219047 1.190680 0.017395 1.532530 0.937673 0.245176 1.028110 0.018984 1.524840 0.999965 0.050638 3.30363 0.002227 6.90862
20 0.980932 0.128987 1.954700 0.009780 2.363250 0.980456 0.145464 1.781270 0.010747 2.345640 0.999989 0.027260 4.19706 0.001264 7.72586
30 0.991326 0.085235 2.552410 0.006614 2.927680 0.991277 0.088651 2.495710 0.007199 2.923630 0.999995 0.024174 4.37043 0.000821 8.34938
40 0.994860 0.073429 2.767500 0.005096 3.303830 0.994780 0.074613 2.744430 0.005574 3.292780 0.999997 0.019051 4.71397 0.000639 8.70910
50 0.996679 0.056184 3.153700 0.004098 3.618300 0.996609 0.063071 2.986870 0.004495 3.603220 0.999998 0.013844 5.17463 0.000515 9.02239
60 0.997705 0.048836 3.355910 0.003408 3.884390 0.997663 0.051763 3.271940 0.003733 3.871370 0.999999 0.010995 5.50702 0.000429 9.28605
70 0.998351 0.041459 3.592180 0.002889 4.122550 0.998313 0.046638 3.422350 0.003172 4.106350 0.999999 0.009853 5.66527 0.000344 9.60491
80 0.998746 0.039205 3.672810 0.002520 4.319950 0.998719 0.041360 3.595630 0.002764 4.304850 0.999999 0.005462 6.51638 0.000287 9.86289
90 0.999021 0.036553 3.773880 0.002226 4.498400 0.999006 0.039500 3.662010 0.002436 4.487260 1.000000 0.004720 6.72692 0.000255 10.03280
100 0.999215 0.036223 3.786950 0.001994 4.657700 0.999203 0.039248 3.671250 0.002180 4.646930 1.000000 0.004663 6.74462 0.000229 10.18750
110 0.999360 0.032390 3.948300 0.001800 4.805020 0.999353 0.034504 3.857110 0.001965 4.797270 1.000000 0.004514 6.79134 0.000200 10.38310
120 0.999468 0.025774 4.277930 0.001641 4.938570 0.999464 0.027569 4.180820 0.001789 4.932490 1.000000 0.004357 6.84233 0.000179 10.54510
130 0.999558 0.023009 4.441670 0.001497 5.071420 0.999554 0.026040 4.263130 0.001630 5.066280 1.000000 0.003736 7.06434 0.000162 10.68880
140 0.999621 0.019998 4.644020 0.001386 5.182670 0.999619 0.023862 4.389130 0.001507 5.179980 1.000000 0.003555 7.13587 0.000147 10.83130
150 0.999676 0.018024 4.793960 0.001281 5.295760 0.999676 0.021087 4.567490 0.001390 5.296720 1.000000 0.003101 7.33307 0.000135 10.95510
160 0.999727 0.016863 4.890000 0.001176 5.419450 0.999727 0.018639 4.745550 0.001276 5.419800 1.000000 0.002720 7.52227 0.000126 11.05260
170 0.999766 0.016409 4.929370 0.001089 5.529700 0.999766 0.019072 4.712400 0.001182 5.530120 1.000000 0.002374 7.71851 0.000117 11.15940
180 0.999797 0.015076 5.051600 0.001013 5.634640 0.999797 0.017163 4.864520 0.001100 5.633670 1.000000 0.001990 7.97330 0.000109 11.26720
190 0.999824 0.013711 5.188570 0.000945 5.734670 0.999823 0.015473 5.014100 0.001027 5.732990 1.000000 0.001856 8.07381 0.000101 11.37100
200 0.999845 0.012854 5.281600 0.000886 5.827290 0.999844 0.015292 5.031090 0.000964 5.824980 1.000000 0.001825 8.09788 0.000093 11.48360

200 rows × 15 columns


In [30]:
# bad variables
v.loc(axis=1)[("soa_a2","CMFDQR","TOT_ICLD_VISTAU"),statistics_of_interest]


Out[30]:
VARIABLE CMFDQR TOT_ICLD_VISTAU soa_a2
STATISTIC correlation max_error precisionbits rms_error srr correlation max_error precisionbits rms_error srr correlation max_error precisionbits rms_error srr
K M
1 10 0.935128 0.831227 -0.733315 0.014663 1.49691 0.870440 0.863806 -0.788780 0.019822 1.02246 0.809418 0.838487 -0.745860 0.016882 0.767995
20 0.959301 0.800885 -0.679667 0.011686 1.82427 0.911693 0.857936 -0.778943 0.016545 1.28324 0.840783 0.769293 -0.621606 0.015564 0.885305
30 0.975111 0.751592 -0.588022 0.009176 2.17321 0.926705 0.845402 -0.757710 0.015132 1.41200 0.857900 0.758325 -0.600888 0.014772 0.960673
40 0.979653 0.717059 -0.520163 0.008306 2.31689 0.937850 0.820705 -0.714935 0.013974 1.52682 0.889726 0.613881 -0.296031 0.013124 1.131330
50 0.982807 0.708659 -0.503164 0.007641 2.43723 0.942555 0.787982 -0.656234 0.013451 1.58186 0.920090 0.550637 -0.139174 0.011261 1.352150
60 0.987623 0.659105 -0.398581 0.006491 2.67258 0.946721 0.774796 -0.631888 0.012968 1.63462 0.929854 0.514995 -0.042630 0.010578 1.442500
70 0.989639 0.623518 -0.318504 0.005942 2.80009 0.949942 0.759654 -0.603415 0.012580 1.67842 0.950426 0.413015 0.275734 0.008940 1.685230
80 0.990371 0.589952 -0.238671 0.005729 2.85270 0.952737 0.753228 -0.591158 0.012233 1.71882 0.971575 0.278263 0.845477 0.006806 2.078670
90 0.992180 0.569403 -0.187521 0.005165 3.00216 0.954899 0.736276 -0.558320 0.011956 1.75180 0.977740 0.249791 1.001210 0.006032 2.252790
100 0.992780 0.554584 -0.149479 0.004964 3.05947 0.957160 0.679558 -0.442668 0.011660 1.78806 0.980667 0.244702 1.030900 0.005626 2.353410
110 0.993953 0.542598 -0.117956 0.004544 3.18701 0.960097 0.666384 -0.414425 0.011261 1.83822 0.985863 0.153256 1.705980 0.004817 2.577280
120 0.994932 0.519463 -0.055093 0.004161 3.31402 0.962402 0.627323 -0.327280 0.010938 1.88028 0.987739 0.146190 1.774080 0.004488 2.679300
130 0.995421 0.501562 -0.004500 0.003956 3.38702 0.965034 0.606819 -0.279338 0.010555 1.93168 0.989478 0.143896 1.796900 0.004160 2.789020
140 0.995905 0.488652 0.033122 0.003741 3.46749 0.968775 0.567734 -0.183287 0.009984 2.01193 0.990887 0.139391 1.842790 0.003872 2.892220
150 0.996262 0.482382 0.051751 0.003575 3.53320 0.974092 0.504621 -0.013273 0.009106 2.14463 0.991439 0.140358 1.832820 0.003754 2.937070
160 0.996585 0.462576 0.112237 0.003417 3.59812 0.978702 0.461445 0.115769 0.008266 2.28428 0.992045 0.136778 1.870100 0.003619 2.989810
170 0.996834 0.455777 0.133599 0.003290 3.65281 0.982388 0.439786 0.185125 0.007524 2.42005 0.992472 0.135538 1.883230 0.003521 3.029450
180 0.997039 0.451629 0.146791 0.003182 3.70087 0.984406 0.435556 0.199071 0.007083 2.50707 0.992804 0.132499 1.915940 0.003443 3.061940
190 0.997455 0.418412 0.257004 0.002951 3.81006 0.985725 0.434351 0.203067 0.006779 2.57034 0.993454 0.128531 1.959810 0.003284 3.129920
200 0.997613 0.414881 0.269230 0.002858 3.85611 0.987671 0.390035 0.358325 0.006304 2.67536 0.993719 0.123898 2.012780 0.003217 3.159640
2 10 0.949138 0.813521 -0.702251 0.013031 1.66721 0.892951 0.863536 -0.788329 0.018126 1.15151 0.829051 0.777192 -0.636344 0.016076 0.838632
20 0.970152 0.783346 -0.647722 0.010036 2.04395 0.924748 0.858885 -0.780537 0.015325 1.39373 0.866331 0.704763 -0.495210 0.014359 1.001530
30 0.978628 0.712064 -0.510078 0.008510 2.28182 0.936154 0.823370 -0.719613 0.014157 1.50804 0.888868 0.622119 -0.315262 0.013172 1.126070
40 0.984223 0.675823 -0.434717 0.007322 2.49874 0.943942 0.785738 -0.652121 0.013293 1.59897 0.911623 0.570566 -0.190466 0.011817 1.282700
50 0.988058 0.639539 -0.355105 0.006377 2.69820 0.947997 0.774591 -0.631507 0.012816 1.65164 0.936417 0.527587 -0.077480 0.010088 1.510920
60 0.989998 0.589637 -0.237900 0.005839 2.82538 0.951813 0.759592 -0.603296 0.012349 1.70520 0.964057 0.433893 0.204589 0.007638 1.912160
70 0.991834 0.564117 -0.174067 0.005278 2.97102 0.954354 0.755894 -0.596256 0.012027 1.74334 0.973692 0.355067 0.493838 0.006551 2.133730
80 0.993477 0.551282 -0.140863 0.004719 3.13244 0.957142 0.717281 -0.520611 0.011662 1.78777 0.977930 0.317480 0.655262 0.006007 2.258880
90 0.994357 0.520672 -0.058447 0.004390 3.23675 0.959912 0.665832 -0.413229 0.011287 1.83495 0.985386 0.227607 1.135380 0.004897 2.553540
100 0.995071 0.509298 -0.026581 0.004104 3.33399 0.962418 0.635019 -0.344871 0.010935 1.88059 0.987838 0.210362 1.249060 0.004470 2.685130
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
9 110 0.998554 0.218972 1.191180 0.002225 4.21749 0.988178 0.328525 0.605926 0.006173 2.70548 0.996508 0.184582 1.437660 0.002400 3.582180
120 0.998742 0.201739 1.309440 0.002075 4.31796 0.990398 0.258623 0.951077 0.005567 2.85468 0.996982 0.172486 1.535450 0.002232 3.687190
130 0.998910 0.191200 1.386850 0.001931 4.42140 0.992188 0.208113 1.264560 0.005023 3.00289 0.997426 0.154138 1.697710 0.002061 3.801830
140 0.999043 0.179265 1.479830 0.001810 4.51480 0.993591 0.202066 1.307100 0.004551 3.14519 0.997753 0.150105 1.735960 0.001926 3.899840
150 0.999151 0.172699 1.533670 0.001705 4.60150 0.994595 0.192531 1.376840 0.004181 3.26774 0.998005 0.129837 1.945220 0.001815 3.985360
160 0.999232 0.164834 1.600910 0.001622 4.67314 0.995574 0.174653 1.517440 0.003784 3.41146 0.998251 0.118750 2.074000 0.001700 4.080190
170 0.999312 0.152390 1.714160 0.001535 4.75262 0.996306 0.162890 1.618030 0.003458 3.54167 0.998439 0.105631 2.242890 0.001606 4.162170
180 0.999376 0.149995 1.737020 0.001462 4.82340 0.996901 0.138058 1.856660 0.003167 3.66821 0.998599 0.096334 2.375810 0.001521 4.240100
190 0.999432 0.137113 1.866560 0.001394 4.89147 0.997501 0.133189 1.908450 0.002845 3.82300 0.998737 0.091018 2.457700 0.001445 4.314710
200 0.999489 0.130206 1.941130 0.001322 4.96784 0.997828 0.131054 1.931760 0.002652 3.92428 0.998885 0.084151 2.570880 0.001357 4.404870
10 10 0.975266 0.656360 -0.392559 0.009147 2.17766 0.934351 0.809331 -0.694803 0.014349 1.48861 0.888527 0.636792 -0.348894 0.013191 1.123980
20 0.987531 0.450154 0.151508 0.006515 2.66725 0.950615 0.683761 -0.451565 0.012498 1.68793 0.936494 0.486705 0.038882 0.010082 1.511760
30 0.992846 0.331755 0.591809 0.004942 3.06606 0.956897 0.626803 -0.326083 0.011695 1.78374 0.957920 0.441695 0.178879 0.008252 1.800690
40 0.995034 0.328510 0.605993 0.004119 3.32862 0.962673 0.604202 -0.273102 0.010899 1.88541 0.978414 0.351872 0.506876 0.005941 2.274710
50 0.996231 0.312111 0.679869 0.003590 3.52714 0.966214 0.531391 -0.087846 0.010378 1.95600 0.986403 0.324261 0.624772 0.004725 2.605180
60 0.997088 0.225824 1.146730 0.003156 3.71297 0.971063 0.493956 0.017545 0.009617 2.06598 0.990641 0.197598 1.339360 0.003924 2.873100
70 0.997613 0.212422 1.235000 0.002858 3.85615 0.976182 0.460543 0.118591 0.008736 2.20453 0.992708 0.179101 1.481150 0.003465 3.052410
80 0.998039 0.193055 1.372920 0.002591 3.99764 0.981019 0.431799 0.211568 0.007808 2.36653 0.994246 0.170009 1.556320 0.003080 3.222660
90 0.998317 0.165206 1.597660 0.002400 4.10818 0.984843 0.433422 0.206156 0.006984 2.52741 0.995506 0.151083 1.726580 0.002723 3.400510
100 0.998574 0.157242 1.668940 0.002210 4.22719 0.989046 0.407289 0.295876 0.005944 2.76014 0.996304 0.136256 1.875610 0.002469 3.541280
110 0.998762 0.151223 1.725250 0.002058 4.32957 0.991780 0.354304 0.496941 0.005152 2.96625 0.996789 0.130101 1.942300 0.002302 3.642480
120 0.998908 0.139937 1.837150 0.001933 4.41989 0.993248 0.287216 0.799792 0.004671 3.10768 0.997275 0.117338 2.091260 0.002121 3.760730
130 0.999023 0.133830 1.901530 0.001829 4.49977 0.994443 0.255457 0.968850 0.004239 3.24770 0.997625 0.107586 2.216440 0.001980 3.859720
140 0.999141 0.126625 1.981370 0.001715 4.59246 0.995369 0.224625 1.154410 0.003871 3.37894 0.997948 0.087988 2.506540 0.001841 3.965120
150 0.999239 0.117768 2.085980 0.001614 4.68056 0.996077 0.205802 1.280670 0.003563 3.49840 0.998235 0.071001 2.816020 0.001707 4.073580
160 0.999323 0.110741 2.174740 0.001522 4.76488 0.996824 0.194294 1.363690 0.003207 3.65036 0.998482 0.066228 2.916420 0.001584 4.182120
170 0.999396 0.107175 2.221960 0.001438 4.84703 0.997409 0.172039 1.539200 0.002897 3.79717 0.998656 0.064385 2.957130 0.001490 4.270160
180 0.999467 0.100571 2.313720 0.001352 4.93646 0.997909 0.142146 1.814560 0.002602 3.95164 0.998834 0.061054 3.033760 0.001388 4.372540
190 0.999523 0.091884 2.444040 0.001279 5.01650 0.998248 0.139551 1.841140 0.002383 4.07898 0.998981 0.057560 3.118790 0.001297 4.469850
200 0.999569 0.084831 2.559260 0.001215 5.09065 0.998566 0.137734 1.860040 0.002156 4.22326 0.999096 0.055853 3.162220 0.001222 4.555950

200 rows × 15 columns


In [31]:
# fewer scenarios (K=10 only)
v.loc(axis=0)[10,:].mean(axis=0).unstack()[statistics_of_interest].sort("max_error").tail(60).join(vi)


Out[31]:
rms_error max_error precisionbits srr correlation levels name
VARIABLE
DTV 0.002307 0.150761 2.312318 3.777210 0.993982 30 T vertical diffusion
AREI 0.005116 0.150780 2.295831 4.860082 0.998484 30 Average ice effective radius
IWC 0.003250 0.151053 2.127201 4.416385 0.996918 30 Grid box average ice water content
PRECL 0.004623 0.151348 2.053304 3.470388 0.990067 1 Large-scale (stable) precipitation rate (liq +...
ABSORB 0.001092 0.152000 2.139774 3.718342 0.989966 30 Aerosol absorption
WGUSTD 0.009387 0.159573 1.925118 3.728114 0.989039 1 wind gusts from turbulence
FREQS 0.005249 0.159683 1.967627 5.261795 0.999213 30 Fractional occurance of snow
TAUX 0.008240 0.159833 1.989205 3.969613 0.994015 1 Zonal surface stress
VFLX 0.001319 0.160396 2.087766 2.340672 0.957608 31 Meridional momentm flux
CMFMCDZM 0.003645 0.161406 1.775917 4.605288 0.997919 31 Convection mass flux from ZM deep
so4_a3 0.003247 0.161805 2.031945 4.184827 0.992704 30 so4_a3 concentration
SSTSFMBL 0.009603 0.162602 1.930210 4.790970 0.998109 1 Mobilization flux at surface
SNOWHICE 0.009109 0.162854 2.919806 5.138699 0.991865 1 Water equivalent snow depth
AWNC 0.004605 0.163289 1.911400 3.748893 0.992979 30 Average cloud water number conc
bc_a1 0.002457 0.164768 2.133224 3.576152 0.988670 30 bc_a1 concentration
CMFDT 0.003099 0.165926 1.906378 4.703353 0.997948 30 T tendency - shallow convection
LANDFRAC 0.008297 0.166796 2.678521 7.021870 0.999360 1 Fraction of sfc area covered by land
OCNFRAC 0.008611 0.167786 2.671528 7.049564 0.999306 1 Fraction of sfc area covered by ocean
AQRAIN 0.002229 0.168214 1.927235 3.469130 0.991019 30 Average rain mixing ratio
UFLX 0.000897 0.170230 2.142051 2.644936 0.970718 31 Zonal momentum flux
ICLDIWP 0.002988 0.171661 1.949385 4.001875 0.994231 30 In-cloud ice water path
ICWMR 0.003727 0.174587 1.688543 4.755901 0.998301 30 Prognostic in-cloud water mixing ratio
TKE 0.002680 0.179692 2.130382 4.504809 0.997176 31 Turbulent Kinetic Energy
TAUTMSX 0.007790 0.183793 1.994213 2.856892 0.957881 1 Zonal turbulent mountain surface stress
wat_a1 0.003682 0.184100 1.894613 4.781895 0.998221 30 aerosol water, interstitial, mode 01
KVH 0.003475 0.185180 1.922911 3.994893 0.995400 31 Vertical diffusion diffusivities (heat/moisture)
CLDLIQ 0.003772 0.186238 1.902282 3.883411 0.994689 30 Grid box averaged cloud liquid amount
VD01 0.002724 0.189762 1.989764 4.075565 0.995490 30 Vertical diffusion of Q
QTFLX 0.003661 0.190431 2.182217 5.542273 0.999126 31 Total water flux
KVM 0.003637 0.190924 1.801932 3.935414 0.995265 31 Vertical diffusion diffusivities (momentum)
soa_a2 0.003739 0.194723 1.787021 3.327927 0.984954 30 soa_a2 concentration
LCLOUD 0.005653 0.195806 1.811231 4.820936 0.998143 30 Liquid cloud fraction
PRECSL 0.008072 0.195993 1.623321 4.113386 0.994463 1 Large-scale (stable) snow rate (water equivalent)
FICE 0.007421 0.197044 1.609409 5.828861 0.999287 30 Fractional ice content within cloud
PRECSH 0.006537 0.200311 1.681084 3.690425 0.992156 1 Shallow Convection precipitation rate
num_a1 0.002130 0.203107 1.824452 3.414676 0.987545 30 num_a1 concentration
ICIMR 0.003666 0.203327 1.586450 4.012357 0.994773 30 Prognostic in-cloud ice mixing ratio
AODMODE2 0.006635 0.206758 1.836645 3.055206 0.974747 1 Aerosol optical depth 550 nm mode 2
AQSNOW 0.002395 0.207676 1.689907 3.789387 0.994127 30 Average snow mixing ratio
CMFDQR 0.002874 0.209861 1.495143 4.092331 0.996444 30 Q tendency - shallow convection rainout
NUMLIQ 0.004362 0.225002 1.485313 3.372489 0.989077 30 Grid box averaged cloud liquid number
AREL 0.004691 0.225738 1.407114 4.920433 0.998450 30 Average droplet effective radius
pom_a1 0.002310 0.227821 1.581035 3.353629 0.984126 30 pom_a1 concentration
QC 0.003460 0.236336 1.287794 4.520361 0.997582 30 Q tendency - shallow convection LW export
wat_a2 0.002197 0.256026 1.405818 3.147286 0.983557 30 aerosol water, interstitial, mode 02
PRECSC 0.008153 0.257288 1.140838 3.252799 0.984395 1 Convective snow rate (water equivalent)
ANSNOW 0.003332 0.257889 1.360512 2.492806 0.978072 30 Average snow number conc
DMS 0.002985 0.264619 1.119987 4.697205 0.997218 30 DMS concentration
num_a2 0.003229 0.277273 1.313120 3.042506 0.978477 30 num_a2 concentration
SNOWHLND 0.009510 0.326186 1.105382 5.449907 0.994402 1 Water equivalent snow depth
BURDEN2 0.007675 0.329139 1.421354 3.239291 0.971717 1 Aerosol burden mode 2
TOT_ICLD_VISTAU 0.006682 0.379783 0.606781 2.831333 0.981639 30 Total in-cloud extinction visible sw optical d...
ANRAIN 0.005135 0.406939 0.512524 3.407987 0.992012 30 Average rain number conc
LND_MBL 0.011713 0.427956 0.977802 2.695587 0.845516 1 Soil erodibility factor
SO2 0.003376 0.455712 0.674063 3.174208 0.980712 30 SO2 concentration
so4_a2 0.002666 0.470166 0.716732 2.563449 0.957498 30 so4_a2 concentration
dst_a1SF 0.004019 0.495278 0.244394 1.143793 0.790318 1 dst_a1 dust surface emission
DSTSFMBL 0.004019 0.495278 0.244394 1.143793 0.790318 1 Mobilization flux at surface
dst_a3SF 0.004019 0.495278 0.244394 1.143793 0.790318 1 dst_a3 dust surface emission
H2SO4 0.004325 0.564690 -0.029436 2.891796 0.978089 30 H2SO4 concentration

Best/worst runs


In [32]:
v.mean(axis=1,level="STATISTIC")[statistics_of_interest].sort("rms_error").head(20).join(o.loc[:,"compression_ratio"])


Out[32]:
rms_error max_error precisionbits srr correlation compression_ratio
K M
10 200 0.001179 0.036685 4.171292 6.217852 0.999405 0.706582
190 0.001264 0.039919 4.069947 6.119300 0.999217 0.671280
8 200 0.001315 0.042373 3.899866 6.057898 0.999315 0.565332
9 200 0.001334 0.042846 3.970926 6.043406 0.999467 0.635957
10 180 0.001354 0.043330 3.963846 6.020019 0.999090 0.635978
7 200 0.001389 0.043791 3.849059 5.979769 0.999246 0.494707
8 190 0.001410 0.045703 3.794118 5.958123 0.999195 0.537091
9 190 0.001429 0.046101 3.860802 5.946728 0.999413 0.604185
10 170 0.001458 0.047120 3.856658 5.915552 0.998937 0.600676
7 190 0.001485 0.047639 3.743508 5.884144 0.999109 0.469996
8 180 0.001516 0.050718 3.671740 5.858091 0.998975 0.508849
9 180 0.001525 0.049159 3.756998 5.854614 0.999349 0.572413
10 160 0.001572 0.051557 3.740192 5.806754 0.998754 0.565374
7 180 0.001595 0.052499 3.614048 5.781628 0.998938 0.445284
6 200 0.001599 0.052599 3.722570 5.787851 0.998655 0.424082
9 170 0.001635 0.052899 3.638873 5.755664 0.999277 0.540641
8 170 0.001635 0.055154 3.557428 5.751932 0.998804 0.480607
5 200 0.001681 0.054493 3.670439 5.713097 0.998802 0.353457
10 150 0.001707 0.056384 3.599720 5.689856 0.998629 0.530071
6 190 0.001713 0.056721 3.610284 5.689755 0.998554 0.402901

In [33]:
v.mean(axis=1,level="STATISTIC")[statistics_of_interest].sort("max_error").head(20).join(o.loc[:,"compression_ratio"])


Out[33]:
rms_error max_error precisionbits srr correlation compression_ratio
K M
10 200 0.001179 0.036685 4.171292 6.217852 0.999405 0.706582
190 0.001264 0.039919 4.069947 6.119300 0.999217 0.671280
8 200 0.001315 0.042373 3.899866 6.057898 0.999315 0.565332
9 200 0.001334 0.042846 3.970926 6.043406 0.999467 0.635957
10 180 0.001354 0.043330 3.963846 6.020019 0.999090 0.635978
7 200 0.001389 0.043791 3.849059 5.979769 0.999246 0.494707
8 190 0.001410 0.045703 3.794118 5.958123 0.999195 0.537091
9 190 0.001429 0.046101 3.860802 5.946728 0.999413 0.604185
10 170 0.001458 0.047120 3.856658 5.915552 0.998937 0.600676
7 190 0.001485 0.047639 3.743508 5.884144 0.999109 0.469996
9 180 0.001525 0.049159 3.756998 5.854614 0.999349 0.572413
8 180 0.001516 0.050718 3.671740 5.858091 0.998975 0.508849
10 160 0.001572 0.051557 3.740192 5.806754 0.998754 0.565374
7 180 0.001595 0.052499 3.614048 5.781628 0.998938 0.445284
6 200 0.001599 0.052599 3.722570 5.787851 0.998655 0.424082
9 170 0.001635 0.052899 3.638873 5.755664 0.999277 0.540641
5 200 0.001681 0.054493 3.670439 5.713097 0.998802 0.353457
8 170 0.001635 0.055154 3.557428 5.751932 0.998804 0.480607
10 150 0.001707 0.056384 3.599720 5.689856 0.998629 0.530071
6 190 0.001713 0.056721 3.610284 5.689755 0.998554 0.402901

In [34]:
v.mean(axis=1,level="STATISTIC")[statistics_of_interest].sort("rms_error", ascending=False).head(20).join(o.loc[:,"compression_ratio"])


Out[34]:
rms_error max_error precisionbits srr correlation compression_ratio
K M
1 10 0.032613 0.558757 0.026621 1.554078 0.873119 0.003883
2 10 0.029116 0.541185 0.091786 1.711856 0.890421 0.007434
3 10 0.026023 0.520275 0.141566 1.857496 0.909598 0.010985
4 10 0.024421 0.487644 0.225357 1.945359 0.919464 0.014536
5 10 0.023227 0.484181 0.247338 2.015131 0.924582 0.018086
6 10 0.022947 0.476629 0.261784 2.034291 0.926251 0.021637
1 20 0.022761 0.477184 0.322678 2.035921 0.919614 0.007413
7 10 0.020720 0.447893 0.399521 2.175731 0.936636 0.025188
8 10 0.019766 0.444562 0.392137 2.239239 0.938765 0.028739
2 20 0.019743 0.442116 0.427316 2.228669 0.932706 0.014494
9 10 0.019230 0.440454 0.421433 2.280314 0.940855 0.032290
10 10 0.018575 0.423196 0.474407 2.327416 0.944117 0.035840
1 30 0.017676 0.421664 0.547743 2.384021 0.937093 0.010944
3 20 0.017391 0.426849 0.480582 2.400904 0.943077 0.021576
4 20 0.016387 0.400637 0.583792 2.499455 0.949668 0.028657
5 20 0.015510 0.382905 0.652881 2.571205 0.953374 0.035737
2 30 0.015137 0.383848 0.677909 2.599401 0.949513 0.021555
6 20 0.014901 0.363810 0.732395 2.635758 0.957521 0.042819
1 40 0.014652 0.380159 0.719347 2.642628 0.950439 0.014474
7 20 0.013745 0.353876 0.805793 2.757408 0.962853 0.049900

In [35]:
v.mean(axis=1,level="STATISTIC")[statistics_of_interest].sort("max_error", ascending=False).head(20).join(o.loc[:,"compression_ratio"])


Out[35]:
rms_error max_error precisionbits srr correlation compression_ratio
K M
1 10 0.032613 0.558757 0.026621 1.554078 0.873119 0.003883
2 10 0.029116 0.541185 0.091786 1.711856 0.890421 0.007434
3 10 0.026023 0.520275 0.141566 1.857496 0.909598 0.010985
4 10 0.024421 0.487644 0.225357 1.945359 0.919464 0.014536
5 10 0.023227 0.484181 0.247338 2.015131 0.924582 0.018086
1 20 0.022761 0.477184 0.322678 2.035921 0.919614 0.007413
6 10 0.022947 0.476629 0.261784 2.034291 0.926251 0.021637
7 10 0.020720 0.447893 0.399521 2.175731 0.936636 0.025188
8 10 0.019766 0.444562 0.392137 2.239239 0.938765 0.028739
2 20 0.019743 0.442116 0.427316 2.228669 0.932706 0.014494
9 10 0.019230 0.440454 0.421433 2.280314 0.940855 0.032290
3 20 0.017391 0.426849 0.480582 2.400904 0.943077 0.021576
10 10 0.018575 0.423196 0.474407 2.327416 0.944117 0.035840
1 30 0.017676 0.421664 0.547743 2.384021 0.937093 0.010944
4 20 0.016387 0.400637 0.583792 2.499455 0.949668 0.028657
2 30 0.015137 0.383848 0.677909 2.599401 0.949513 0.021555
5 20 0.015510 0.382905 0.652881 2.571205 0.953374 0.035737
1 40 0.014652 0.380159 0.719347 2.642628 0.950439 0.014474
3 30 0.013379 0.366781 0.735514 2.767690 0.958665 0.032166
6 20 0.014901 0.363810 0.732395 2.635758 0.957521 0.042819

Error vs Compression Ratio


In [70]:
# error vs compression ratio, one line per K
grouped_data = v.loc(axis=0)[5:10,:].mean(axis=1,level="STATISTIC")[statistics_of_interest].join(o.loc[:,"compression_ratio_fixed"]).reset_index().groupby("K")
for key,grp in grouped_data:
    plt.plot(grp["compression_ratio_fixed"],grp["rms_error"],label="K = " + str(key))
plt.legend()
plt.xlabel("compression ratio")
plt.ylabel("mean rms error")
plt.title("error vs compression ratio, by K")
plt.xlim((0.08,0.11))
plt.ylim((0.001,0.002))


Out[70]:
(0.001, 0.002)

In [68]:
# compression ratio vs time per solve, one line per K
grouped_data = o.loc(axis=0)[7:10,:].reset_index().groupby("K")
for key,grp in grouped_data:
    plt.plot(grp["compression_ratio_fixed"],grp["time_solve"],label="K = " + str(key))
plt.legend(loc=2)
plt.xlabel("compression ratio")
plt.ylabel("time to solve")
plt.title("error vs compression ratio, by K")
#plt.xlim((0.10,0.14))
#plt.ylim((0.0008,0.0012))


Out[68]:
<matplotlib.text.Text at 0x7f53ddefcf98>

In [37]:
# error vs compression ratio, one line per M
grouped_data = v.loc(axis=0)[:,:].mean(axis=1,level="STATISTIC")[statistics_of_interest].join(o.loc[:,"compression_ratio_fixed"]).reset_index().groupby("M")
for key,grp in grouped_data:
    plt.plot(grp["compression_ratio_fixed"],grp["rms_error"],label="M = " + str(key))
    #print(grp)
#plt.legend()
plt.xlabel("compression ratio")
plt.ylabel("mean rms error")
plt.title("error vs compression ratio, by M")


Out[37]:
<matplotlib.text.Text at 0x7f53de96f320>

In [38]:
# 3D variables only
variables_3D = list(vi[vi.levels == 30].index)
grouped_3D = v.loc[:,variables_3D].mean(axis=1,level="STATISTIC")[statistics_of_interest].join(o.loc[:,"compression_ratio_fixed"]).reset_index().groupby("K")
for key,grp in grouped_3D:
    plt.plot(grp["compression_ratio_fixed"],grp["rms_error"],label="K = " + str(key))
plt.legend()


Out[38]:
<matplotlib.legend.Legend at 0x7f53de96bda0>

In [39]:
grouped_single = v.loc[:,"VT"][statistics_of_interest].join(o.loc[:,"compression_ratio_fixed"]).reset_index().groupby("K")
for key,grp in grouped_single:
    plt.plot(grp["compression_ratio_fixed"],grp["rms_error"],label="K = " + str(key))
plt.legend()


Out[39]:
<matplotlib.legend.Legend at 0x7f53dea72f28>

In [40]:
t = v.loc(axis=0)[8,200].unstack().sort("max_error", ascending=False).join(vi)["levels"].reset_index().reset_index()
t[t.levels < 10].hist("index")


Out[40]:
array([[<matplotlib.axes.AxesSubplot object at 0x7f53de9d6c18>]], dtype=object)

In [41]:
t[t.levels>=30].hist("index")


Out[41]:
array([[<matplotlib.axes.AxesSubplot object at 0x7f53de7177f0>]], dtype=object)

In [42]:
#o.reset_index().plot(x="M", y="time_solve")
# 3D variables only
grouped_time = o.reset_index().groupby("K")
for key,grp in grouped_time:
    plt.plot(grp["M"],grp["time_solve"],label="K = " + str(key))
plt.legend(loc=2)


Out[42]:
<matplotlib.legend.Legend at 0x7f53de690a20>

Four variables at different compression ratios


In [52]:
v.loc(axis=1)[["U","FSDSC","Z3","CCN3"],"rms_error"].join(o["compression_ratio_fixed"]).loc(axis=0)[8,:]
v.loc(axis=1)[["U","FSDSC","Z3","CCN3"],"correlation"].join(o["compression_ratio_fixed"]).loc(axis=0)[8,:]


Out[52]:
(CCN3, correlation) (FSDSC, correlation) (U, correlation) (Z3, correlation) compression_ratio_fixed
K M
8 10 0.973654 0.991845 0.986003 0.999938 0.005468
20 0.989047 0.997210 0.995316 0.999985 0.010438
30 0.994398 0.998522 0.998008 0.999994 0.015409
40 0.996443 0.999339 0.998933 0.999996 0.020379
50 0.997627 0.999555 0.999318 0.999998 0.025350
60 0.998179 0.999720 0.999524 0.999998 0.030320
70 0.998578 0.999826 0.999651 0.999999 0.035290
80 0.998885 0.999866 0.999736 0.999999 0.040261
90 0.999091 0.999900 0.999788 0.999999 0.045231
100 0.999230 0.999924 0.999831 1.000000 0.050202
110 0.999335 0.999935 0.999859 1.000000 0.055172
120 0.999443 0.999951 0.999883 1.000000 0.060143
130 0.999514 0.999963 0.999905 1.000000 0.065113
140 0.999594 0.999971 0.999920 1.000000 0.070084
150 0.999642 0.999975 0.999932 1.000000 0.075054
160 0.999683 0.999980 0.999941 1.000000 0.080025
170 0.999718 0.999983 0.999949 1.000000 0.084995
180 0.999754 0.999986 0.999955 1.000000 0.089966
190 0.999781 0.999987 0.999961 1.000000 0.094936
200 0.999805 0.999989 0.999965 1.000000 0.099907

In [51]:
v.loc(axis=1)[["U","FSDSC","Z3","CCN3"],"max_error"].join(o["compression_ratio_fixed"]).loc(axis=0)[8,:]


Out[51]:
(CCN3, max_error) (FSDSC, max_error) (U, max_error) (Z3, max_error) compression_ratio_fixed
K M
8 10 0.549114 0.300649 0.326978 0.060395 0.005468
20 0.435776 0.111562 0.195177 0.025157 0.010438
30 0.250617 0.102046 0.132702 0.021455 0.015409
40 0.222734 0.095497 0.137346 0.018558 0.020379
50 0.158119 0.073507 0.110762 0.017540 0.025350
60 0.147850 0.061602 0.085000 0.016874 0.030320
70 0.136870 0.055606 0.066489 0.014166 0.035290
80 0.098520 0.059387 0.061466 0.013852 0.040261
90 0.090614 0.062971 0.038670 0.011644 0.045231
100 0.085407 0.061753 0.038410 0.011237 0.050202
110 0.072485 0.057276 0.037132 0.009493 0.055172
120 0.070625 0.058673 0.032301 0.007653 0.060143
130 0.067034 0.056381 0.029827 0.006939 0.065113
140 0.065346 0.057903 0.026102 0.006592 0.070084
150 0.063502 0.055686 0.023904 0.005716 0.075054
160 0.056206 0.052997 0.022932 0.004736 0.080025
170 0.053030 0.051606 0.022263 0.003796 0.084995
180 0.049188 0.046691 0.021437 0.003730 0.089966
190 0.045225 0.040633 0.018439 0.003705 0.094936
200 0.045484 0.038110 0.018905 0.003679 0.099907